Потенциальная энергия через разность потенциалов. Электрический потенциал. Потенциал электростатического поля и напряжение

Важнейшим понятием, используемым в электрике, радиотехнике и в любой другой сфере, связанной с электричеством, выступает разность потенциалов между точками, или более привычное название – электрическое напряжение. С виду простое понятие включает в себя довольно много аспектов и тезисов.

Сущность понятия потенциальной разницы

Первоначально охарактеризуем сам термин, что такое разность потенциалов. Такая разница в потенциалах между двумя точками, находящимися на некотором расстоянии (А и Б), есть значение, прямо пропорциональное проведенному действию среды по переносу источника электромагнитного фона со знаком «+» из одной точки в другую и обратно пропорциональная величине самого источника электромагнитного поля.

Как найти разность потенциалов, отображено формулой:

φ1-φ2=А1-2/q, где:

  • φ1 – заряженная частичка в исходном месте;
  • φ2 – заряженная частичка в конечном месте;
  • А1-2 – действие, потраченное на перенос частицы с первоначального местоположения до конечного размещения;
  • q – заряд, находящийся в среде.

Потенциальная разница имеет свою единицу измерения – вольт. Итальянский физиолог, военный инженер и физик А.Вольт занимался этой проблематикой и явил миру ряд понятий: разность потенциалов и электрическое напряжение, назвав единицу измерения своей фамилией. По системе СИ характеристика 1 Вольт прямо пропорциональна параметру 1 Джоуль и обратно пропорциональна 1 Кулону.

Поведение заряженных частиц

Токопроводящие материалы при более детальном рассмотрении состоят из плотно прилегающих друг к другу ядер вещества, не способных самостоятельно передвигаться. Вокруг этих ядер находятся мелкие частички, вращающиеся с огромной скоростью и называемые электронами. Их скорость настолько велика, что они способны отрываться от своих ядер и присоединяться к другим и таким образом беспрепятственно передвигаться по материалу. Молекула или частичка будет считаться электрически нейтральной при условии, что численность электронов в молекуле соответствует уровню протонов в ядре. Если же забрать некоторое число свободно вращающихся отрицательно заряженных частиц, то молекула будет всячески стремиться восстановить их количество. Образуя вокруг себя положительную область со знаком «+», молекула будет стремиться притянуть к себе недостающее число отрицательно заряженных частиц. От численности недостающих электронов и будет зависеть ускорение и сила тока, с которой они будут притягиваться, и, соответственно, сила положительного фона. Проведя обратную операцию, добавив в молекулу лишних электронов, получим силу, старающуюся вытолкнуть лишний их объем и, соответственно, образующую электрическое поле, но уже со знаком «-» – отрицательная среда. Эта ускоряющая разность потенциалов заставляет все электроны двигаться в одном направлении.

Изучив это явление, французский физик Шарль Огюстен Кулон ввел физическую величину, которая определяла способность тел быть источником ЭМ фона и принимать участие в электромагнитном взаимодействии. Такая величина получила название электрический заряд, с величиной измерения Кулон.

В итоге получены два источника ЭМ фона, один из которых стремится отдать излишек электронов, второй – притянуть электроны в достаточном количестве. Каждый такой заряд обладает своей «силой». Выражение, которое бы количественно характеризовало его сущность, представлено отношением:

и пропорционально энергетике источника поля, размещенного в данной точке к этому заряду. Соответственно, этот показатель характеризует работу источника электромагнитного поля и является энергетической характеристикой области. В случае если имеется некоторое количество заряженных частиц, то, опираясь на принцип суперпозиции, суммарная энергия образовавшейся области равна сумме полей зарядов, сформированных каждым в отдельности:

φсумм.=φ1+φ2+…+ φі.

Неотъемлемой частью расчетов выступает работа по перемещению заряда в электрической среде. Опираясь на то, что на положительный точечный источник электромагнитного поля q в электрическом поле с напряженностью Е действует сила:

на отрезке L совершается действие, равное:

Одно из свойств электростатического поля повествует о возможности пренебречь траекторией движения заряда при совершении работы по перемещению между двумя точками, а учитывать только первоначальную и конечную точку и величину источника электромагнитного поля. Соответственно косинусом можно пренебречь:

А=qEl=qE(l1-l2)=qEl1-qEl2,

поскольку действие А является мерой измерения энергии, и:

В результате работу находить достаточно легко:

A=W1-W2=-(W2-W1).

Исходя из формулы, определяющей величину энергопотенциала:

и воспринимая работу А как разницу энергий, доказана формула потенциальной разницы:

φ1-φ2=А1-2/q.

Изложенный материал подробно раскрывает такие термины, как разность потенциалов и потенциал. Детально рассмотрены порядок возникновения заряженных частиц, электростатического поля и их поведение по отношению друг к другу. Дополнительно рассмотрено ряд законов, касающихся основ электродинамики.

Видео


Из курса Механики известно, что потенциальная энергия тела связана с работой силы, например, подъем груза в гравитационном поле увеличивает его потенциальную энергию.

Поскольку, в электрическом поле на заряды также действуют силы, понятие потенциальной энергии будет справедливо и для электрических полей, при этом изменение потенциальной энергии электрического поля является движущей силой электрического тока, и называется напряжением .

Предположим, что в электрическом поле плоского конденсатора положительно заряженный одиночный заряд движется по направлению к положительной пластине, как показано на рисунке ниже.

На одиночный заряд со стороны положительной пластины будет действовать отталкивающая сила, а со стороны отрицательной - притягивающая. Определим изменение потенциальной энергии одиночного положительного заряда при его перемещении между пластинами конденсатора, против сил, действующих в противоположном направлении.

Работа, выполняемая одиночным зарядом, будет равна:

  • F - сила, действующая на заряд;
  • s - перемещение заряда.

В свою очередь:

F = qE тогда A = qEs

  • q - величина заряда;
  • E - напряженность электрического поля.

Данная величина работы будет равна увеличению потенциальной энергии заряда ΔW :

ΔW = qEs

Электрическое поле в физике характеризуется его напряженностью - силой, действующей со стороны поля на точечный заряд в 1 Кл.

Изменение потенциальной энергии электрического поля между двумя точками описывается электрическим напряжением или разностью потенциалов .

Разность потенциалов определяется, как отношение работы электрического поля при переносе электрического заряда из одной точки в другую к его величине.

Поскольку, A = qEs , т.е., работа равна изменению потенциальной энергии заряда при перемещении на расстояние s от отрицательной пластины, поэтому, электрический потенциал в месте нахождения электрического заряда будет равен:

U = W/q = Es

Электрический потенциал точечного заряда

Определить потенциал точечного заряда Q будет сложнее, поскольку его электрическое поле не такое постоянное, как в конденсаторе, и зависит от расстояния до течечного объекта:

F = (kQq)/r 2

  • F - сила, действующая на пробный заряд;
  • Q - заряд точечного объекта;
  • q - заряд пробного объекта, помещенного в электрическое поле объекта Q;
  • r - расстояние между точечным зарядом Q и пробным зарядом q;
  • k=8,99·10 9 Н·м 2 /Кл 2

Напряженность электрического поля в любой точке вокруг точечного заряда определяется по формуле:

F = (kQ)/r 2

Изменение электрического потенциала пробного заряда равно выполненной работе, деленной на величину пробного заряда:

U = A/q = kQ/r

  • U - разность потенциалов;
  • A - работа.

Чем больше расстояние r, тем ниже потенциал (при r=∞ U=0).

Электрический потенциал, как и электрическое поле можно представить графически в виде эквипотенциальных поверхностей (поверхности с одинаковым потенциалом). Поскольку, величина потенциала точечного заряда зависит от расстояния, то эквипотенциальными поверхностями точечного заряда являются сферы, в центре которых находится точечный заряд. Соответственно эквипотенциальными поверхностями плоского конденсатора будут плоскости, расположенные параллельно пластинам конденсатора.

Емкость конденсатора

Выше уже было сказано, что на пластинах конденсатора хранятся противоположные по знаку электрические заряды, которые притягиваются друг к другу, но не могут соединиться. А сколько зарядов может находиться на пластинах конкретного конденсатора, говоря другими словами, каков заряд конденсатора ?

Заряд конденсатора определяется его емкостью , и связан с напряжением между пластинами следующей формулой:

  • q - заряд пластин конденсатора;
  • C - емкость конденсатора;
  • U - напряжение между пластинами конденсатора.

Для плоского конденсатора напряженность его электрического поля определяется по формуле:

E = q/(ε 0 A)

  • A - площадь пластины конденсатора;
  • ε 0 - электрическая постоянная

Поскольку, для плоского конденсатора U=Es , то U=(qs)/(ε 0 A) .

Подставив в формулу значение заряда q=CU , получаем формулу емкости конденсатора (измеряется в Фарадах):

C = q/U = (ε 0 A)/s Кл/В или Ф

В реальных конденсаторах, которые применяются в электрических схемах приборов и устройств, пластины конденсатора разделены не воздухом, а диэлектриком (веществом, которое плохо проводит электричество). Применение диэлектрика дает возможность инженерам конструировать малогабаритные конденсаторы достаточно большой емкости, чего простой воздух делать не позволяет.

Емкость конденсатора увеличивается пропорционально диэлектрической проницаемости диэлектрика ε:

C = q/U = (εε 0 A)/s

Проведя несложные расчеты, можно вывести формулу для определения энергии конденсатора.

В механике взаимное действие тел друг на друга характеризуют силой или потенциальной энергией. Электростатическое поле , осуществляющее взаимодействие между за-рядами, также характеризую двумя величинами, Напряженность поля — это силовая характеристика. Теперь введем энергетическую характерис-тику — потенциал.

Потенциал поля . Работа любого электростатического поля при перемещении в нем заряженного тела из одной точки в другую также не за-висит от формы траектории, как и работа однородного поля. На замкну-той траектории работа электростати-ческого поля всегда равна нулю. Поля, обладающие таким свойством, называют потенциальными. Потен-циальный характер, в частности, имеет электростатическое поле точечного заряда.

Работу потенциального поля можно выразить через изменение потенциальной энергии. Формула А= — (W P 1 — W P 2) справедлива для любого электростатического поля. И только в случае однородного по-ля потенциальная энергия выражает-ся формулой W p =qEd.

Потенциал

Потенциальная энер-гия заряда в электростатическом по-ле пропорциональна заряду. Это справедливо как для однородного поля, так и для любого другого. Следовательно, от-ношение потенциальной энергии к за-ряду не зависит от помещенного в поле заряда.

Это позволяет ввести новую ко-личественную характеристику по-ля — потенциал, не зависящую от заряда, помещенного в поле.

Потенциалом электростатическо-го поля называют отношение потен-циальной энергии заряда в поле к этому заряду.

Согласно данному определению потенциал равен:

Напряженность поля является вектором и представляет собой си-ловую характеристику поля; она определяет силу, действующую на заряд q в данной точке поля. По-тенциал φ — скаляр, это энергетиче-ская характеристика поля; он опре-деляет потенциальную энергию за-ряда q в данной точке поля.

Если в качестве нулевого уровня потенциальной энергии, а значит, и потенциала принять отрицательно заряженную пластину, то согласно формулам W p =qEd и (1) потенциал однородного поля равен:

Разность потенциалов

Подобно потенциальной энергии, значение по-тенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Практическое значение имеет не сам потенциал в точке, а изменение потенциала, которое не за-висит от выбора нулевого уровня отсчета потенциала.

Так как потенциальная энергия W p = qφ, то работа равна:

разность потенциалов, т. е. разность значений потенциала в начальной и конечной точках траектории.


Разность потенциалов называют также напряжением.

Согласно формулам (2) и (3) разность потенциалов оказы-вается равной:

(4)

Разность потенциалов (напряже-ние) между двумя точками равна отношению работы поля при пе-ремещении заряда из начальной точки в конечную к этому за-ряду.

Зная напряжение в осветитель-ной сети, мы тем самым знаем ра-боту, которую электрическое поле может совершить при перемещении единичного заряда от одного кон-такта розетки к другому по любой электрической цепи. С понятием раз-ности потенциалов мы будем иметь дело на протяжении всего курса физики.

Единица разности потенциалов

Единицу разности потенциалов уста-навливают с помощью формулы (4). В Международной системе единиц работу выражают в джоулях, а заряд — в кулонах. Поэтому раз-ность потенциалов между двумя точками равна единице, если при перемещении заряда в 1 Кл из одной точки в другую электрическое поле совершает работу в 1 Дж. Эту единицу называют вольтом (В); 1 В = 1 Дж/1 Кл.

Энергетическую характеристику электростатического поля называют потенциалом. Потенциал равен от-ношению потенциальной энергии за-ряда в поле к заряду. Разность потенциалов между двумя точками равна работе по перемещению еди-ничного заряда.

Понятие энергии исключительно полезно для решения задач механики. Прежде всего энергия сохраняется и поэтому служит важной характеристикой явлений природы. Используя представления об энергии, многие задачи удается решить, не имея детальных сведений о силах или в случае, когда применение законов Ньютона потребовало бы сложных вычислений.

Энергетическим подходом можно воспользоваться и при изучении электрических явлений, и здесь он оказывается чрезвычайно полезным: позволяет не только обобщить закон сохранения энергии, но и в новом аспекте увидеть электрические явления, а также служит средством более просто находить решения, чем путем рассмотрения сил и электрических полей.

Потенциальную энергию можно определить лишь для консервативных сил; работа такой силы по перемещению частицы между двумя точками не зависит от выбранного пути.
Легко видеть, что электростатическая сила является консервативной: сила, с которой один точечный заряд действует на другой, определяется законом Кулона: F = kQ 1 Q 2 /r 2 ; здесь та же обратно пропорциональная зависимость от квадрата расстояния, что и в законе всемирного тяготения: F = Gm 1 m 2 /r 2 . Такие силы консервативны. Сила, действующая на выбранный заряд со стороны любого распределения зарядов, может быть записана в виде суммы кулоновских сил; следовательно, и сила, создаваемая произвольным распределением зарядов, консервативна. А это позволяет ввести потенциальную энергию электростатического поля.

Разность потенциальных энергий точечного заряда q в двух различных точках электрического поля можно определить как работу, совершаемую внешними силами по перемещению заряда (против действия электрической силы) из одной точки в другую. Это равносильно определению изменения потенциальной энергии заряда в поле как взятой с обратным знаком работы, совершаемой самим полем по перемещению заряда из одной точки в другую.

Рассмотрим для примера электрическое поле между двумя пластинами с равным по величине и противоположным по знаку зарядом. Пусть размеры пластин велики по сравнению с расстоянием между ними, и поэтому поле между пластинами можно считать однородным (рис. 24.1).
Поместим в точку а вблизи положительно заряженной пластины точечный положительный заряд q . Электрическая сила, действующая на заряд, будет стремиться переместить его к отрицательной пластине (в точку b ), совершая работу по переносу заряда. Под действием силы заряд приобретет ускорение и его кинетическая энергия возрастет; при этом потенциальная энергия уменьшится на величину работы, совершенной электрической силой по перемещению заряда из точки a в точку b . Согласно закону сохранения энергии, потенциальная энергия заряда в электрическом поле перейдет в кинетическую энергию, но полная энергия останется неизменной. Заметим, что положительный заряд q обладает наибольшей потенциальной энергией U вблизи положительной пластины (в этой точке его способность совершать работу над другим телом или системой максимальна). Для отрицательного заряда справедливо обратное: его потенциальная энергия будет максимальна вблизи отрицательной пластины.

Напряженность электрического поля мы определяли как силу, действующую на единичный заряд; аналогично удобно ввести электрический потенциал (или просто потенциал, если это не вызывает недоразумений) как потенциальную энергию единичного заряда. Электрический потенциал обозначается символом V ; итак, если в некоторой точке a точечный заряд q обладает потенциальной энергией U a , то электрический потенциал в этой точке равен V a = U a /q .
Реально мы измеряем только изменение потенциальной энергии. Соответственно фактически можно измерить лишь разность потенциалов между двумя точками (например, точками a и b на рис. 24.1). Если работа электрических сил по перемещению заряда от точки a в точку b есть W ba (а разность потенциальных энергий соответственно равна этой величине с обратным знаком), то для разности потенциалов можно написать

Единицей электрического потенциала (и разности потенциалов) является джоуль на кулон (Дж/Кл); этой единице присвоено наименование вольт (В) в честь Алессандро Вольты (1745-1827) (он известен как изобретатель электрической батареи); 1 В = 1 Дж/Кл. Заметим, что, согласно данному определению, положительно заряженная пластина на рис. 24.1 имеет более высокий потенциал, чем отрицательная. Таким образом, положительно заряженное тело будет стремиться перейти из точки с более высоким потенциалом в точку с более низким потенциалом, отрицательно заряженное тело - наоборот. Разность потенциалов часто называют электрическим напряжением.

Потенциал в данной точке V a зависит от выбора «нуля» потенциала; как и в случае потенциальной энергии, нулевой уровень может выбираться произвольно, поскольку измерить можно лишь изменение потенциальной энергии (разность потенциалов). Часто за нулевой принимают потенциал земли или проводника, соединенного с землей, и остальные значения потенциалов отсчитывают относительно «земли». (Например, говоря, что потенциал в какой-то точке равен 50 В, имеют в виду, что разность потенциалов между этой точкой и землей равна 50 В.) В иных случаях, как мы увидим, удобно считать нулевым потенциал на бесконечности.

Поскольку электрический потенциал определяется как потенциальная энергия единичного заряда, изменение потенциальной энергии заряда q при перемещении его из точки a в точку b равно

Δ U = U b - U a = qV ba

Другими словами, когда заряд q перемещается между точками с разностью потенциалов V ba , его потенциальная энергия изменяется на величину qV ba . Если, например, разность потенциалов между пластинами на рис. 24.1 составляет 6 В, то заряд 1 Кл, перемещенный (внешней силой) из точки b в точку a , увеличит свою потенциальную энергию на (1 Кл) (6 В) = 6 Дж. (Перемещаясь же из a в b , он потеряет потенциальную энергию 6 Дж.) Аналогично энергия заряда 2 Кл увеличится на 12 Дж и т. п. Таким образом, электрический потенциал служит мерой изменения потенциальной энергии электрического заряда в данной ситуации. А поскольку потенциальная энергия - это способность совершать работу, электрический потенциал служит мерой той работы, которую может совершить данный заряд. Количество работы зависит как от разности потенциалов, так и от величины заряда.

Чтобы лучше понять смысл электрического потенциала, проведем аналогию с гравитационным полем. Пусть камень падает с вершины скалы. Чем выше скала, тем большей потенциальной энергией обладает камень и тем больше будет его кинетическая энергия, когда он долетит до подножия скалы. Величина кинетической энергии и соответственно работа, которую может совершить камень, зависят от высоты скалы и от массы камня. Точно так же и в электрическом поле изменение потенциальной энергии (и работа, которую можно совершить) зависит от разности потенциалов (эквивалентной высоте скалы) и заряда (эквивалентного массе).

Используемые на практике источники электроэнергии - батареи, электрогенераторы - создают определенную разность потенциалов. Количество энергии, отбираемой от источника, зависит от величины переносимого заряда.
Рассмотрим, например, автомобильную фару, соединенную с аккумулятором, разность потенциалов на зажимах которого равна 12 В. Количество энергии, преобразуемой фарой в свет (и, конечно, в тепло), пропорционально заряду, протекшему через фару, что в свою очередь зависит от того, как долго включена фара. Если за некоторое время через фару прошел заряд 5,0 Кл, то преобразованная фарой энергия составит (5,0 Кл)*(12,0 В) = 60 Дж. Если оставить фару включенной вдвое дольше, то через нее пройдет заряд 10,0 Кл, и количество преобразованной энергии составит (10,0 Кл)*(12,0 В) = 120 Дж.
Эффекты, обусловленные тем или иным распределением зарядов, можно описать как с помощью напряженности электрического поля, так и через электрический потенциал. Между напряженностью поля и потенциалом существует тесная связь. Рассмотрим вначале эту связь для случая однородного электрического поля, например поля между пластинами на рис. 24.1 с разностью потенциалов V ba . Работа электрического поля по перемещению положительного заряда q из точки a в точку b равна

W = - qV ba

Обратим внимание на то, что величина V ba = V b - V a отрицательна (V ba a выше, чем в точке b (и положителен по отношению к потенциалу в точке b ). Поэтому совершаемая полем работа положительна.
С другой стороны, работа равна произведению силы на перемещение, а сила, действующая на заряд q , есть F = qE , где Е - напряженность однородного электрического поля между пластинами. Таким образом,

W = Fd = qEd

где d - расстояние между точками a и b (вдоль силовой линии). Приравняв эти выражения для работы, получим

- qV ba = qEd

V b - V a = V ba = - Ed (поле E однородно).

Знак минус в правой части указывает просто на то, что V a V b , т.е. потенциал положительной пластины выше, чем отрицательной, как мы уже говорили. Положительные заряды стремятся двигаться из области с высоким потенциалом в область с низким потенциалом. Отсюда можно найти Е :

Е = - V ba /d .

Из последнего равенства видно, что напряженность электрического поля можно измерять как в вольтах на метр (В/м), так и в ньютонах на кулон (Н/Кл). Эти единицы эквивалентны между собой: 1 Н/Кл = 1 Н·м/Кл·м = 1 Дж/Кл·м = 1 В/м.

Чтобы перейти к общему случаю неоднородного электрического поля, вспомним соотношение между силой F и потенциальной энергией U , обусловленной этой силой. Разность потенциальных энергий в двух точках пространства a и b определится формулой

где dl - бесконечно малое перемещение, а интеграл берется вдоль произвольной траектории между точками a и b . В случае электрического поля нас больше интересует разность не потенциальных энергий, а потенциалов:

V ba = V b - V a = (U b - U a)/q

Напряженность электрического поля Е в любой точке пространства определяется отношением силы к заряду: Е = F/q . Подставляя эти два равенства в формулу, получим

Это и есть общее соотношение, связывающее напряженность электрического поля с разностью потенциалов.

Когда поле однородно, например, на рис. 24.1 вдоль траектории, параллельной силовым линиям, от точки a у положительной пластины до точки b у отрицательной пластины (поскольку направления E и dl всюду совпадают) имеем

где d - расстояние вдоль силовой линии между точками a и b . И вновь знак минус в правой части свидетельствует лишь о том, что на рис. 24.1 V a > V b .

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!

Если в одну и ту же точку данного электростатического поля помещать пробные заряды, например, кратные q 0:

q о1 = q o , q o 2 = 2q o , ... , q on = nq o ,

то они будут характеризоваться различным значением потенциальной энергии:

W p 1 = W p , W p 2 = 2W p , ... , W pn = nW p .

Отношение потенциальной энергии к соответствующей величине пробного заряда всегда будет величиной постоянной, т. е.

Величину  называют потенциалом электростатического поля в данной точке.

Таким образом, для описания электростатического поля, кроме силовой характеристики  напряженности вектора , используют скалярную энергетическую характеристику этого поля  потенциал .

Используя формулу (18), найдем потенциал электростатического поля точечного заряда q на расстоянии r от него в СИ:

. (25)

Если среда, окружающая заряд безграничный диэлектрик с проницаемостью , то потенциал электростатического поля точечного заряда q на расстоянии r

. (26)

Если электростатическое поле создано системой точечных зарядов:

q 1 , q 2 , ... , q n ,

то на основании (18):

потенциал результирующего поля равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности,

. (27)

Из (25) следует, что заряд q 0, находящийся в произвольной точке электростатического поля с потенциалом , характеризуется потенциальной энергией W p = q 0 . (28)

Физический смысл имеет не сам потенциал поля, а разность потенциалов, поэтому работа сил этого поля над зарядом q o записывается в виде

А= W p 1  W p 2 = q 0 ( 1   2), (29)

где  1 и  2 потенциалы электрического поля начальной и конечной точек перемещения пробного заряда.

Если заряд q 0 из точки с потенциалом  удаляется на бесконечность, где потенциал равен нулю (  = 0) или перемещается из бесконечности в данную точку поля, то

А  = q 0 . (30)

В СИ за единицу потенциала принят вольт (В).

7. Связь между е и 

Электрическое поле полностью описывается векторной функцией
. В этом случае можно найти силу, действующую на пробный заряд в любой точке поля, и вычислить работу поля при любом перемещении пробного заряда.

Но электрическое поле также характеризуется и потенциалом .

Следовательно, между ними существует связь. Действительно, согласно (21) и (29), для единичного, положительного заряда (q o = +1 Кл) имеем

. (31)

Формула (31) остается справедливой не только для конечных, но и для элементарных перемещений
, т. е.

или
. (32)

Следовательно, проекция вектора
на направление
равна со знаком минус первой производной потенциала по данному направлению.

Если перемещение
параллельно оси Х, то
=dx, где единичный вектор оси Х; dx приращение координаты х. Исходя из этого, получим

(
) =dx = E x dx,

где Е х проекция вектора на ось Х.

Значит, с учетом (1.55) последнее выражение запишем в виде

, (33)

где символ частной производной свидетельствует о том, что функцию

= (х, у, z) необходимо дифференцировать только по х, считая у, и z постоянными.

Аналогично можно найти выражения для проекций Е у и Е z , т. е.

,
,
.

Зная проекции вектора на оси координат можно найти и сам вектор,

. (34)

В формуле (34) выражение в скобках является градиентом потенциала  (grad или ). Таким образом,

= grad  = . (35)

Знак «» означает, что вектор направлен в сторону убывания потенциала; векторный оператор «набла».