Скорость химической реакции. Цель: выясним, что есть скорость химической реакции, и от каких факторов она зависит. В ходе урока познакомимся с теорией. Что такое константа скорости химической реакции? Что называют скоростью химической реакции в каких

Скорость реакции определяется числом элементарных актов взаимодействия происходящих в единицу времени в единице объема (для гомогенных реакций) или на единице поверхности раздела фаз (для гетерогенных реакций реакции). Скорость реакции обычно характеризуют изменением концентрации реагирующих веществ во времени. Концентрацию в растворе выражают в моль/л, в газах парциальным давлением, время в секундах. Изменение концентрации DС=С 2 -С 1 за промежуток времени Dt=t 2 -t 1 и определит скорость процесса.

Знак «-» при уменьшении концентрации реагирующих веществ, знак «+» при увеличении концентрации продуктов реакции.

О скорости реакции можно судить по скорости изменения какого-либо свойства системы, например, окраски, электропроводности, спектра, давления, выпадения осадка, выделения газа и др.

Скорость процесса пропорциональна вероятности столкновения частиц, которая определяется их концентрацией.

Указанная закономерность установлена опытным путем в 1864-67гг К. Гульдбергом и П. Вааге, в 1865г Н.И. Бекетовым, является основным законом химической кинетики и называется законом действующих масс : при постоянной температуре скорость гомогенных химических реакций прямо пропорциональна произведению концентраций реагирующих веществ, возведенных в степень их стехиометрических коэффициентов .

Так для реакций

1) Н 2 +Cl 2 =2HCl, ;

2) 2NO+O 2 =2NO 2 , .

k – коэффициент пропорциональности или константа скорости, показывает какая часть от общей концентрации веществ реагирует в данных условиях, определяется природой веществ и изменяется с температурой.

Величина k численно равна скорости реакции, когда концентрации реагирующих веществ равны единице.

От каких факторов она зависит?Константа скорости реакции (удельная скорость реакции) - коэффициент пропорциональности в кинетическом уравнении.Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль/л.Константа скорости реакции зависит от температуры, от природы реагирующих веществ, от катализатора, но не зависит от их концентрации. Для реакции вида 2А+2В->3C+D скорость образования продуктов реакции и скорость расходования реагентов могут быть представлены как: d[A]/(2*dt)=d[B]/(2*dt)=d[C]/(3*dt)=d[D]/dt Таким образом, чтобы избежать использования нескольких форм записи скорости для одной и той же реакции используют химическую переменную, которая определяет степень протекания реакции и не зависит от стехиометрических коэффициентов: ξ=(Δn)/ν где ν - стехиометрический коэффициент. Тогда скорость реакции: v=(1/V)*dξ/dt где V - объем системы.

57.Как зависит скорость хим.реакции от температуры?Правило Вант-Гоффа,Уравнение Аррениуса.
Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа: при изменении температуры на каждые 10 градусов скорость большинства реакций изменяется в 2-4 раза.

Математически правило Вант-Гоффа выражается так:

где v(T2) и v(T1) - скорости реакций, соответственно при температурах Т2 и T1 (T2> T1);

γ-температурный коэффициент скорости реакции.

Значение γ для эндотермической реакции выше, чем для экзотермической. Для многих реакций γ лежит в пределах 2-4.

Физический смысл величины γ заключается в том, что он показывает, во сколько раз изменяется скорость реакции при изменении температуры на каждые 10 градусов.

Поскольку скорость реакции и константа скорости химической реакции прямопропорциональны, то выражение (3.6) часто записывают в следующем виде:

где k(T2), k(T1)- константы скорости реакции соответственно

при температурах T2 и T1;

γ -температурный коэффициент скорости реакции.

Уравнение Аррениуса . В 1889 г. шведский ученый С. Арре-1иус на основании экспериментов вывел уравнение, которое на-звано его именем

где k - константа скорости реакции;

k0 - предэксноненциальный множитель;

е - основание натурального логарифма;

Ea - постоянная, называемая энергией активации, определяемая природой реагентов:

R-универсальная газовая постоянная, равная 8,314 Дж/моль×К.

Значения Еa для химических реакций лежат в пределах 4 - 400 кДж/моль.

Многие реакции характеризуются определенным энергети-ческим барьером. Для его преодоления необходима энергия актации - некоторая избыточная энергия (по сравнению со вредней энергией молекул при данной температуре), которой должны обладать молекулы для того, чтобы их столкновение было эффективным, т. е. привело бы к образованию нового ве-щества. С ростом температуры число активных молекул быстро увеличивается, что и приводит к резкому возрастанию скорости реакции.

В общем случае, если температура реакции изменяется от Т1 до Т2, уравнение (3.9) после логарифмирования примет вид:

.

Это уравнение позволяет рассчитывать энергию активации реакции при изменении температуры от Т1 до Т2.

Скорость химических реакций возрастает в присутствии катализатора. Действие катализатора заключается в том, что он образует с реагентами неустойчивые промежуточные соединения (активированные комплексы), распад которых приводит к. образованию продуктов реакции. При этом энергия активации, понижается, и активными становятся молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие, катализатора. В результате возрастает общее число активных£ молекул и увеличивается скорость реакции.

Движенья все непрерывную цепь
образуют И возникают одно из
другого в известном порядке.
Лукреций

Что такое механизм химической реакции? Что такое кинетическое уравнение реакции и в чем его смысл? Каков механизм действия катализатора? Что такое ингибиторы?

Урок-лекция

ХИМИЧЕСКАЯ РЕАКЦИЯ КАК ПРИМЕР ДВИЖЕНИЯ . Вспомните, что такое скорость химической реакции и от каких факторов она зависит.

Химические реакции идут с различными скоростями. Диапазон их скоростей чрезвычайно широк - от практически мгновенных реакций (взрыв, многие реакции в растворах) до крайне медленных, идущих столетиями (например, окисление бронзы на воздухе).

Гравюра. Алхимики

В XIX в. было установлено, что химические реакции в подавляющем большинстве представляют собой многостадийные процессы, т. е. совершаются не путем непосредственного одновременного столкновения частиц реагентов с образованием продуктов, а через ряд простых (элементарных) процессов. Действительно, если бы, к примеру, реакция окисления аммиака шла в одну стадию, то это потребовало бы огромных затрат энергии на одновременный разрыв связей в молекулах аммиака и кислорода. Кроме того, вероятность столкновения трех частиц очень мала, четырех - практически равна нулю. Одновременное же столкновение семи частиц (четырех молекул аммиака и трех молекул кислорода) просто невозможно.

Каждая элементарная стадия химической реакции - это либо химический процесс (скажем, распад одной молекулы или столкновение двух частиц), либо переход частицы в возбужденное состояние (или, наоборот, переход ее из возбужденного в основное или низковозбужденное состояние).

Даже простая на первый взгляд реакция

идет по стадиям, причем каждая стадия протекает со своей скоростью.

1-я стадия (быстрая):

2-я стадия (относительно медленная):

Вспомните, какие частицы называют радикалами. Какие реакции называют цепными и что такое энергия активации?

Совокупность элементарных стадий химической реакции, следующих одна за другой (т. е. последовательно) или совершающихся параллельно, называют механизмом химической реакции. Механизмы реакций различны.

Для химика очень важно знать, от каких факторов зависит скорость химической реакции. Особенно важна зависимость скорости реакции (или ее стадий) от концентраций реагирующих веществ. Такую зависимость называют кинетическим уравнением . Для гипотетической реакции аА + bВ = dD + еЕ математическое выражение (кинетическое уравнение) имеет вид

где V - скорость химической реакции; с - концентрация вещества, моль/л; а, Ь - показатели степени (эти величины определяют экспериментально). Коэффициент пропорциональности к в кинетическом уравнении называют константой скорости химической реакции. Она численно равна скорости химической реакции при концентрациях реагирующих веществ, равных 1 моль/л.

Скорость элементарных стадий реакции пропорциональна произведению концентраций частиц-реагентов, например:

Скорость же суммарной реакции может различным, иногда весьма сложным образом зависеть от концентрации реагентов.

Таким образом, превращение одних веществ в другие - это не одномоментное событие, а процесс, развертывающийся во времени, т. е. имеющий свою временную структуру, которая выражена механизмом реакции. Вместе с тем механизм реакции учитывает не только изменения в составе веществ - участников реакции, но и изменение положений атомов в пространстве по мере протекания реакции. Поэтому можно говорить о пространственно-временной структуре реакции.

Начало развития химической кинетики - области химии, изучающей скорости и механизмы химических реакций, пришлось на вторую половину XIX в. Фундамент этой дисциплины был заложен в 1880-е гг. голландским физикохимиком Якобом Вант-Гоффом и шведским ученым Сванте Аррениусом.

КАТАЛИЗ . Уже давно было замечено, что некоторые вещества способны заметно увеличивать скорость химической реакции, хотя сами при этом не изменяют свой химический состав. Такие вещества называют катализаторами . Например, пероксид водорода при комнатной температуре разлагается медленно: 2Н 2 0 2 = 2Н 2 0 + 0 2 . В присутствии же платины скорость его разложения возрастает более чем в 2000 раз, а фермент каталаза (содержится в крови) увеличивает скорость реакции в 90 млрд раз!

Катализатор не расходуется в химическом процессе. Он включается в промежуточные стадии процесса и регенерирует в самом конце. Поэтому само уравнение реакции его не включает.

Мир катализаторов широк и многообразен, как и способы их действия. Но в целом можно сказать, что катализатор, включаясь в механизм реакции, изменяет его и направляет процесс по энергетически более выгодному пути. При этом, что особенно важно, катализаторы могут вызывать протекание с заметной скоростью таких процессов, которые без них практически не идут.

Каждый катализатор может ускорять лишь определенные типы реакций, а в ряде случаев только отдельные реакции. Такая особенность катализаторов называется селективностью (избирательностью). Селективность действия катализаторов позволяет получать лишь определенный нужный продукт определенным образом: «направить» действие лекарства и т. п. Наибольшей селективностью и эффективностью отличаются биологические катализаторы - ферменты , которые катализируют биохимические реакции, протекающие в живых организмах.

Есть вещества, которые замедляют или вообще прекращают химические процессы. Их называют ингибиторами . Однако в отличие от катализаторов ингибиторы расходуются в ходе реакции.

  • От каких причин зависят скорости химических реакций?
  • Может ли скорость какой-нибудь реакции быть пропорциональна квадрату концентрации какого-либо вещества? Если да, то приведите примеры.
  • Предложите гипотезу, объясняющую, почему в отличие от катализаторов ингибиторы расходуются в ходе реакции.

1. Что называют скоростью химической реакции? В каких единицах ее измеряют? От каких факторов она зависит?

2. Сравните понятия «скорость движения» и «скорость химической реакции». Что между ними общего?

3. Какие две классификации реакций по агрегатному состоянию реагентов и по участию в них катализатора вы можете предложить? Приведите примеры таких реакций, запишите их уравнения.

4. Сформулируйте закон действующих масс. Для каких реакций он справедлив?

5. Сформулируйте закон Вант-Гоффа.

6. Что такое катализаторы? На какие группы их можно разделить? Где наиболее эффективно можно использовать ингибиторы?

7. Что такое ферменты? Сравните их с неорганическими катализаторами. Назовите области применения ферментов.

8. Почему при обработке порезов и других ран пероксидом водорода наблюдается его бурное «вскипание»?

9. Сухой хлор хранят в железных баллонах. Влажный хлор разрушает железо. Какую роль играет вода в этом процессе?

10. Для реакции были взяты вещества при температуре 40°С. Затем их нагрели до температуры 70°С. Как изменится скорость химической реакции, если температурный коэффициент ее равен 2?

11. Запишите уравнение, отражающее закон действующих масс, для реакций, уравнения которых:
а) 2NO+O₂↔2NO₂;
б) I₂+H₂↔2HI

12. Почему продукты питания хранят в холодильниках?

Некоторые химические реакции происходят практически мгновенно (взрыв кислородно-водородной смеси, реакции ионного обмена в водном растворе), вторые — быстро (горение веществ, взаимодействие цинка с кислотой), третьи — медленно (ржавление железа, гниение органических остатков). Известны настолько медленные реакции, что человек их просто не может заметить. Так, например, преобразование гранита в песок и глину происходит в течение тысяч лет.

Другими словами, химические реакции могут протекать с разной скоростью .

Но что же такое скорость реакции ? Каково точное определение данной величины и, главное, ее математическое выражение?

Скоростью реакции называют изменение количества вещества за одну единицу времени в одной единице объема. Математически это выражение записывается как:

Где n 1 и n 2 – количество вещества (моль) в момент времени t 1 и t 2 соответственно в системе объемом V .

То, какой знак плюс или минус (±) будет стоять перед выражением скорости, зависит от того, на изменение количества какого вещества мы смотрим – продукта или реагента.

Очевидно, что в ходе реакции происходит расход реагентов, то есть их количество уменьшается, следовательно, для реагентов выражение (n 2 — n 1) всегда имеет значение меньше нуля. Поскольку скорость не может быть отрицательной величиной, в этом случае перед выражением нужно поставить знак «минус».

Если же мы смотрим на изменение количества продукта, а не реагента, то перед выражением для расчета скорости знак «минус» не требуется, поскольку выражение (n 2 — n 1) в этом случае всегда положительно, т.к. количество продукта в результате реакции может только увеличиваться.

Отношение количества вещества n к объему, в котором это количество вещества находится, называют молярной концентрацией С :

Таким образом, используя понятие молярной концентрации и его математическое выражение, можно записать другой вариант определения скорости реакции:

Скоростью реакции называют изменение молярной концентрации вещества в результате протекания химической реакции за одну единицу времени:

Факторы, влияющие на скорость реакции

Нередко бывает крайне важно знать, от чего зависит скорость той или иной реакции и как на нее повлиять. Например, нефтеперерабатывающая промышленность в буквальном смысле бьется за каждые дополнительные полпроцента продукта в единицу времени. Ведь учитывая огромное количество перерабатываемой нефти, даже полпроцента вытекает в крупную финансовую годовую прибыль. В некоторых же случаях крайне важно какую-либо реакцию замедлить, в частности коррозию металлов.

Так от чего же зависит скорость реакции? Зависит она, как ни странно, от множества различных параметров.

Для того чтобы разобраться в этом вопросе прежде всего давайте представим, что происходит в результате химической реакции, например:

A + B → C + D

Написанное выше уравнение отражает процесс, в котором молекулы веществ А и В, сталкиваясь друг с другом, образуют молекулы веществ С и D.

То есть, несомненно, для того чтобы реакция прошла, как минимум, необходимо столкновение молекул исходных веществ. Очевидно, если мы повысим количество молекул в единице объема, число столкновений увеличится аналогично тому, как возрастет частота ваших столкновений с пассажирами в переполненном автобусе по сравнению с полупустым.

Другими словами, скорость реакции возрастает при увеличении концентрации реагирующих веществ.

В случае, когда один из реагентов или сразу несколько являются газами, скорость реакции увеличивается при повышении давления, поскольку давление газа всегда прямо пропорционально концентрации составляющих его молекул.

Тем не менее, столкновение частиц является, необходимым, но вовсе недостаточным условием протекания реакции. Дело в том, что согласно расчетам, число столкновений молекул реагирующих веществ при их разумной концентрации настолько велико, что все реакции должны протекать в одно мгновение. Тем не менее, на практике этого не происходит. В чем же дело?

Дело в том, что не всякое соударение молекул реагентов обязательно будет эффективным. Многие соударения являются упругими – молекулы отскакивают друг от друга словно мячи. Для того чтобы реакция прошла, молекулы должны обладать достаточной кинетической энергией. Минимальная энергия, которой должны обладать молекулы реагирующих веществ для того, чтобы реакция прошла, называется энергией активации и обозначается как Е а. В системе, состоящей из большого количества молекул, существует распределение молекул по энергии, часть из них имеет низкую энергию, часть высокую и среднюю. Из всех этих молекул только у небольшой части молекул энергия превышает энергию активации.

Как известно из курса физики, температура фактически есть мера кинетической энергии частиц, из которых состоит вещество. То есть, чем быстрее движутся частицы, составляющие вещество, тем выше его температура. Таким образом, очевидно, повышая температуру мы по сути увеличиваем кинетическую энергию молекул, в результате чего возрастает доля молекул с энергией, превышающей Е а и их столкновение приведет к химической реакции.

Факт положительного влияния температуры на скорость протекания реакции еще в 19м веке эмпирически установил голландский химик Вант Гофф. На основании проведенных им исследований он сформулировал правило, которое до сих пор носит его имя, и звучит оно следующим образом:

Скорость любой химической реакции увеличивается в 2-4 раза при повышении температуры на 10 градусов.

Математическое отображение данного правила записывается как:

где V 2 и V 1 – скорость при температуре t 2 и t 1 соответственно, а γ – температурный коэффициент реакции, значение которого чаще всего лежит в диапазоне от 2 до 4.

Часто скорость многих реакций удается повысить, используя катализаторы .

Катализаторы – вещества, ускоряющие протекание какой-либо реакции и при этом не расходующиеся.

Но каким же образом катализаторам удается повысить скорость реакции?

Вспомним про энергию активации E a . Молекулы с энергией меньшей, чем энергия активации в отсутствие катализатора друг с другом взаимодействовать не могут. Катализаторы, изменяют путь, по которому протекает реакция подобно тому, как опытный проводник проложит маршрут экспедиции не напрямую через гору, а с помощью обходных троп, в результате чего даже те спутники, которые не имели достаточно энергии для восхождения на гору, смогут перебраться на другую ее сторону.

Не смотря на то что катализатор при проведении реакции не расходуется, тем не менее он принимает в ней активное участие, образуя промежуточные соединения с реагентами, но к концу реакции возвращается к своему изначальному состоянию.

Кроме указанных выше факторов, влияющих на скорость реакции, если между реагирующими веществами есть граница раздела (гетерогенная реакция), скорость реакции будет зависеть также и от площади соприкосновения реагентов. Например, представьте себе гранулу металлического алюминия, которую бросили в пробирку с водным раствором соляной кислоты. Алюминий – активный металл, который способен реагировать с кислотами неокислителями. С соляной кислотой уравнение реакции выглядит следующим образом:

2Al + 6HCl → 2AlCl 3 + 3H 2

Алюминий представляет собой твердое вещество, и это значит, что реакция с соляной кислотой идет только на его поверхности. Очевидно, что если мы увеличим площадь поверхности, предварительно раскатав гранулу алюминия в фольгу, мы тем самым предоставим большее количество доступных для реакции с кислотой атомов алюминия. В результате этого скорость реакции увеличится. Аналогичным образом увеличения поверхности твердого вещества можно добиться измельчением его в порошок.

Также на скорость гетерогенной реакции, в которой реагирует твердое вещество с газообразным или жидким, часто положительно влияет перемешивание, что связано с тем, что в результате перемешивания достигается удаление из зоны реакции скапливающихся молекул продуктов реакции и «подносится» новая порция молекул реагента.

Последним следует отметить также огромное влияние на скорость протекания реакции и природы реагентов. Например, чем ниже в таблице Менделеева находится щелочной металл, тем быстрее он реагирует с водой, фтор среди всех галогенов наиболее быстро реагирует с газообразным водородом и т.д.

Резюмируя все вышесказанное, скорость реакции зависит от следующих факторов:

1) концентрация реагентов: чем выше, тем больше скорость реакции

2) температура: с ростом температуры скорость любой реакции увеличивается

3) площадь соприкосновения реагирующих веществ: чем больше площадь контакта реагентов, тем выше скорость реакции

4) перемешивание, если реакция происходит меду твердым веществом и жидкостью или газом перемешивание может ее ускорить.