Изменчивость, ее виды и биологическое значение. Наследственная изменчивость: особенности и значение Биологическое и медицинское значение фенотипической изменчивости

Изменчивость – это всеобщее свойство живых систем, связанное с изменениями фенотипа и генотипа, возникающими под влиянием внешней среды или в результате изменений наследственного материала. Различают ненаследственную и наследственную изменчивость.

Ненаследственная изменчивость . Ненаследственная, или групповая (определенная), или модификационная изменчивость – это изменения фенотипа под влиянием условий внешней среды. Модификационная изменчивость не затрагивает генотип особей. Генотип, оставаясь неизменным, определяет пределы, в которых может изменяться фенотип. Эти пределы, т.е. возможности для фенотипического проявления признака, называются нормой реакции и наследуются . Норма реакции устанавливает границы, в которых может изменяться конкретный признак. Разные признаки обладают разной нормой реакции – широкой или узкой. Так, например, такие признаки, как группа крови, цвет глаз не изменяются. Форма глаза млекопитающих изменяется незначительно и обладает узкой нормой реакции. Удойность коров может варьировать в довольно широких пределах в зависимости от условий содержания породы. Широкую норму реакции могут иметь и другие количественные признаки – рост, размеры листьев, количество зерен в початке и т.д. Чем шире норма реакции, тем больше возможностей у особи приспособиться к условиям окружающей среды. Вот почему особей со средней выраженностью признака больше, чем особей с крайними его выражениями. Это хорошо иллюстрируется таким примером, как количество карликов и гигантов у людей. Их мало, тогда как людей с ростом в диапазоне 160-180 см в тысячи раз больше.

На фенотипические проявления признака влияет совокупное взаимодействие генов и условий внешней среды. Модификационные изменения не наследуются, но не обязательно носят групповой характер и не всегда проявляются у всех особей вида, находящихся в одинаковых условиях среды. Модификации обеспечивают приспособленность особи к этим условиям.

Наследственная изменчивость (комбинативная, мутационная, неопределенная).

Комбинативная изменчивость возникает при половом процессе в результате новых сочетаний генов, возникающих при оплодотворении, кроссинговере, конъюгации т.е. при процессах, сопровождающихся рекомбинациями (перераспределением и новыми сочетаниями) генов. В результате комбинативной изменчивости возникают организмы, отличающиеся от своих родителей по генотипам и фенотипам. Некоторые комбинативные изменения могут быть вредны для отдельной особи. Для вида же комбинативные изменения, в целом, полезны, т.к. ведут к генотипическому и фенотипическому разнообразию. Это способствует выживанию видов и их эволюционному прогрессу.


Мутационная изменчивость связана с изменениями последовательности нуклеотидов в молекулах ДНК, выпадения и вставок крупных участков в молекулах ДНК, изменений числа молекул ДНК (хромосом). Сами подобные изменения называются мутациями . Мутации наследуются.

Среди мутаций выделяют:

генные – вызывающими изменения последовательности нуклеотидов ДНК в конкретном гене, а следовательно в и-РНК и белке, кодируемом этим геном. Генные мутации бывают как доминантными, так и рецессивными. Они могут привести к появлению признаков, поддерживающих или угнетающих жизнедеятельность организма;

генеративные мутации затрагивают половые клетки и передаются при половом размножении;

соматические мутации не затрагивают половые клетки и у животных не наследуются, а у растений наследуются при вегетативном размножении;

геномные мутации (полиплоидия и гетероплоидия) связаны с изменением числа хромосом в кариотипе клеток;

хромосомные мутации связаны с перестройками структуры хромосом, изменением положения их участков, возникшего в результате разрывов, выпадением отдельных участков и т.д.

Наиболее распространены генные мутации, в результате которых происходит изменение, выпадение или вставка нуклеотидов ДНК в гене. Мутантные гены передают к месту синтеза белка уже иную информацию, а это, в свою очередь, ведет к синтезу других белков и возникновению новых признаков. Мутации могут возникать под влиянием радиации, ультрафиолетового излучения, различных химических агентов. Не все мутации оказываются эффективными. Часть их исправляется при репарациях ДНК. Фенотипически мутации проявляются в том случае, если они не привели к гибели организма. Большинство генных мутаций носят рецессивный характер. Эволюционное значение имеют фенотипически проявившиеся мутации, обеспечившие особям либо преимущества в борьбе за существование, либо наоборот, повлекшие их гибель под давлением естественного отбора.

Мутационный процесс повышает генетическое разнообразие популяций, что создает предпосылки для эволюционного процесса.

Частоту мутаций можно повышать искусственно, что используется в научных и практических целях.

В нашей статье речь пойдет об уникальном свойстве всех живых организмов, которое обеспечило возникновение огромного количества видов живых существ. Это наследственная изменчивость. Что это такое, каковы ее особенности и механизм осуществления? На эти и многие другие вопросы вы сейчас найдете ответы.

Что изучает генетика

Сравнительно молодая наука генетика в 19-м веке открыла человечеству многие тайны его происхождения и развития. А предметом ее изучения являются только два свойства живых организмов: наследственность и изменчивость. Благодаря первому обеспечивается преемственность поколений и осуществляется точная передача генетической информации в целом ряду поколений. А вот изменчивость обеспечивает возникновение новых признаков.

Значение изменчивости

Зачем же организму приобретать эти новые признаки? Ответ достаточно прост: для возможности адаптации. На фото ниже перед вами представители нескольких рас одного биологического вида - Человек Разумный. Их морфологические различия на данном этапе не имеют, естественно, никакого приспособительного значения. А вот их далеким предкам новые черты помогали выжить в тяжелых условиях. Так, представители монголоидной расы имеют узкий разрез глаз, поскольку в степях часто были пыльные бури. А негроиды имеют темную кожу в качестве защиты от палящих солнечных лучей.

Виды изменчивости

Изменчивостью называют свойство организмов приобретать новые признаки в процессе их исторического и индивидуального развития. Она бывает двух видов. Это модификационная и наследственная изменчивость. Их объединяет ряд признаков. Например, неизбежно возникают изменения во внешнем строении организмов. Но вот по продолжительности существования модификаций и степени действия они абсолютно отличаются.

Модификационная изменчивость

Этот вид изменчивости является ненаследственным. Он не закрепляется в генотипе, не носит постоянный характер и возникает под воздействием изменений условий окружающей среды. Ярким примером модификационной изменчивости может служить известный опыт с кроликом. Ему сбривали небольшой участок серой шерсти. А на голый участок кожи прикладывали лед. Через некоторое время на этом месте вырастала шерсть белого цвета, которую также сбривали. Но лед в этом случае не прикладывали. В результате на данном участке снова вырастали волосы темного цвета.

Наследственная изменчивость

Данный вид изменчивости носит постоянный характер, поскольку затрагивает структуру генотипа до уровня нуклеотидов ДНК. При этом новые признаки передаются новым поколениям. Наследственная изменчивость, в свою очередь, также бывает двух типов: комбинативная и мутационная. Первая возникает в случае появления нового сочетания генетического материала. Ее самым простым примером служит слияние гамет в ходе полового размножения. В результате организм, получая по половине генетической информации от мужского и женского организма, приобретает новые признаки.

Второй вид - это мутационная наследственная изменчивость. Она заключается в возникновении резких ненаправленных изменений генотипа под воздействием различных факторов. Ими могут быть ионизирующее и ультрафиолетовое излучение, высокая температура, азотсодержащие химические вещества и другие.

В зависимости от уровня структуры генетического аппарата, в котором происходят изменения, различают несколько типов таких наследственных модификаций. При геномных изменяется число хромосом в общем наборе. Это ведет к анатомическим и морфологическим изменениям в организме. Так, появление третьей хромосомы в 21-й паре вызывает болезнь Дауна. При хромосомных мутациях возникает перестройка этой структуры. Они встречаются гораздо реже, чем геномные. Участки хромосом могут дублироваться или отсутствовать, перекручиваться, изменять свое положение. А вот генные мутации, которые также называют точечными, нарушают последовательность мономеров в структуре нуклеиновых кислот.

Независимо от вида мутаций, все они, как правило, не несут для организма полезных признаков. Поэтому человек учится управлять ими искусствено. Так, в селекции часло используется полиплоидия - кратное увеличение числа хромосом в наборе. В результате растение становится более мощным и дает крупные плоды в большом количестве. Никого уже не удивишь инжирным персиком и другими вкусными растительными гибридами. А ведь они являются результатом искусственно проведенной наследственной изменчивости.

Наследственная изменчивость в процессе эволюции

Развитие генетики помогло сделать значительный шаг вперед и в развитии эволюционного учения. Тот факт, что человека и обезьяну отличает лишь одна пара хромосом, стал существенным доказательством теории Дарвина. У растений и животных в историческом развитии можно проследить наследование прогрессивных черт, которые передавались и закреплялись в генотипе. К примеру, водоросли вышли на сушу благодаря тому, что в генотипе закрепился признак наличия механической и проводящей тканей. Каждое последующее поколение оставляло для себя только нужные, полезные признаки, которые корректировались в зависимости от условий обитания и окружающей среды. Так появились господствующие виды растений и животных, обладающие самыми прогрессивными чертами строения.

Итак, наследственная изменчивость - это способность организмов приобретать новые признаки, которые закрепляются в генотипе. Такие изменения носят продолжительный характер, не исчезают при изменении условий среды и передаются по наследству.

Учебник соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования, рекомендован Министерством образования и науки РФ и включен в Федеральный перечень учебников.

Учебник адресован учащимся 10 класса и рассчитан на преподавание предмета 1 или 2 часа в неделю.

Современное оформление, многоуровневые вопросы и задания, дополнительная информация и возможность параллельной работы с электронным приложением способствуют эффективному усвоению учебного материала.

Книга:

<<< Назад
Вперед >>>

Вспомните!

Приведите примеры признаков, изменяющихся под воздействием внешней среды.

Что такое мутации?

Изменчивость – одно из важнейших свойств живого, способность живых организмов приобретать отличия от особей как других видов, так и своего вида.

Различают два вида изменчивости: ненаследственная (фенотипическая, или модификационная) и наследственная (генотипическая).

Ненаследственная (модификационная) изменчивость. Этот вид изменчивости представляет собой процесс появления новых признаков под влиянием факторов внешней среды, не затрагивающих генотип. Следовательно, возникающие при этом видоизменения признаков – модификации – по наследству не передаются (рис. 93). Два однояйцевых (монозиготных) близнеца, имеющие абсолютно одинаковые генотипы, но волею судьбы выросшие в разных условиях, могут сильно отличаться друг от друга. Классическим примером, доказывающим воздействие внешней среды на развитие признаков, является стрелолист. У этого растения развивается три вида листьев в зависимости от условий произрастания – на воздухе, в толще воды или на её поверхности.


Рис. 93. Листья дуба, выросшие при яркой освещённости (А) и в затенённом месте (Б)


Рис. 94. Изменение окраски шерсти гималайского кролика под влиянием различных температур

Под влиянием температуры окружающей среды изменяется окраска шерсти у гималайского кролика. Эмбрион, развиваясь в утробе матери, находится в условиях повышенной температуры, которая разрушает фермент, необходимый для синтеза пигмента, поэтому кролики рождаются совершенно белыми. Вскоре после рождения отдельные выступающие части тела (нос, кончики ушей и хвоста) начинают темнеть, потому что там температура ниже, чем в других местах, и фермент не разрушается. Если выщипать участок белой шерсти и охладить кожу, на этом месте вырастет чёрная шерсть (рис. 94).

В сходных условиях среды у генетически близких организмов модификационная изменчивость имеет групповой характер , например в летний период у большинства людей под влиянием УФ-лучей в коже откладывается защитный пигмент – меланин, люди загорают.

У одного и того же вида организмов под воздействием условий внешней среды изменчивость различных признаков может быть абсолютно разной. Например, у крупного рогатого скота удой молока, масса, плодовитость очень сильно зависят от условий кормления и содержания, а, например, жирность молока под влиянием внешних условий изменяется очень мало. Проявления модификационной изменчивости для каждого признака ограничены своей нормой реакции. Норма реакции – это пределы, в которых возможно изменение признака у данного генотипа. В отличие от самой модификационной изменчивости, норма реакции наследуется, и её границы различны для разных признаков и у отдельных индивидов. Наиболее узкая норма реакции характерна для признаков, обеспечивающих жизненно важные качества организма.

Благодаря тому что большинство модификаций имеют приспособительное значение, они способствуют адаптации – приспособлению организма в пределах нормы реакции к существованию в изменяющихся условиях.

Наследственная (генотипическая) изменчивость. Этот вид изменчивости связан с изменениями генотипа, и признаки, приобретённые вследствие этого, передаются по наследству следующим поколениям. Существует две формы генотипической изменчивости: комбинативная и мутационная.

Комбинативная изменчивость заключается в появлении новых признаков в результате образования иных комбинаций генов родителей в генотипах потомков. В основе этого вида изменчивости лежит независимое расхождение гомологичных хромосом в первом мейотическом делении, случайная встреча гамет у одной и той же родительской пары при оплодотворении и случайный подбор родительских пар. Также приводит к перекомбинации генетического материала и повышает изменчивость обмен участками гомологичных хромосом, происходящий в первой профазе мейоза. Таким образом, в процессе комбинативной изменчивости структура генов и хромосом не изменяется, однако новые сочетания аллелей приводят к образованию новых генотипов и, как следствие, к появлению потомков с новыми фенотипами.

Мутационная изменчивость выражается в появлении новых качеств организма в результате образования мутаций. Впервые термин «мутация» ввёл в 1901 г. голландский ботаник Гуго де Фриз. Согласно современным представлениям мутации – это внезапные естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению тех или иных фенотипических признаков и свойств организма. Мутации имеют ненаправленный, т. е. случайный, характер и являются важнейшим источником наследственных изменений, без которых невозможна эволюция организмов. В конце XVIII в. в Америке родилась овца с укороченными конечностями, давшая начало новой анконской породе (рис. 95). В Швеции в начале XX в. на звероводческой ферме родилась норка с платиновой окраской меха. Огромное разнообразие признаков у собак и кошек – это результат мутационной изменчивости. Мутации возникают скачкообразно, как новые качественные изменения: из остистой пшеницы образовалась безостая, у дрозофилы появились короткие крылья и полосковидные глаза, у кроликов из естественной природной окраски агути в результате мутаций возникла белая, коричневая, чёрная окраска.

По месту возникновения различают соматические и генеративные мутации. Соматические мутации возникают в клетках тела и не передаются при половом размножении следующим поколениям. Примерами таких мутаций являются пигментные пятна и бородавки кожи. Генеративные мутации появляются в половых клетках и передаются по наследству.


Рис. 95. Овца анконской породы

По уровню изменения генетического материала различают генные, хромосомные и геномные мутации. Генные мутации вызывают изменения в отдельных генах, нарушая порядок нуклеотидов в цепи ДНК, что приводит к синтезу изменённого белка.

Хромосомные мутации затрагивают значительный участок хромосомы , нарушая функционирование сразу многих генов. Отдельный фрагмент хромосомы может удвоиться или потеряться, что вызывает серьёзные нарушения в работе организма, вплоть до гибели эмбриона на ранних стадиях развития.

Геномные мутации приводят к изменению числа хромосом в результате нарушений расхождения хромосом в делениях мейоза. Отсутствие хромосомы или наличие лишней приводит к неблагоприятным последствиям. Наиболее известным примером геномной мутации является синдром Дауна, нарушение развития, которое возникает при появлении лишней 21-й хромосомы. У таких людей общее число хромосом равно 47.

У простейших и у растений часто наблюдается увеличение числа хромосом, кратное гаплоидному набору. Такое изменение хромосомного набора носит название полиплоидия (рис. 96). Возникновение полиплоидов связано, в частности, с нерасхождением гомологичных хромосом в мейозе, в результате чего у диплоидных организмов могут образовываться не гаплоидные, а диплоидные гаметы.

Мутагенные факторы. Способность мутировать – это одно из свойств генов, поэтому мутации могут возникать у всех организмов. Одни мутации несовместимы с жизнью, и получивший их эмбрион гибнет ещё в утробе матери, другие вызывают стойкие изменения признаков, в разной степени значимые для жизнедеятельности особи. В обычных условиях частота мутирования отдельного гена чрезвычайно мала (10 –5), но существуют факторы среды, значительно увеличивающие эту величину, вызывая необратимые нарушения в структуре генов и хромосом. Факторы, воздействие которых на живые организмы приводит к увеличению частоты мутаций, называют мутагенными факторами или мутагенами.


Рис. 96. Полиплоидия. Цветки хризантемы: А – диплоидная форма (2n ); Б – полиплоидная форма

Все мутагенные факторы можно разделить на три группы.

Физическими мутагенами являются все виды ионизирующих излучений (?-лучи, рентгеновские лучи), ультрафиолетовое излучение, высокая и низкая температуры.

Химические мутагены – это аналоги нуклеиновых кислот, перекиси, соли тяжёлых металлов (свинца, ртути), азотистая кислота и некоторые другие вещества. Многие из этих соединений вызывают нарушения в редупликации ДНК. Мутагенное действие оказывают вещества, используемые в сельском хозяйстве для борьбы с вредителями и сорняками (пестициды и гербициды), отходы промышленных предприятий, отдельные пищевые красители и консерванты, некоторые лекарственные препараты, компоненты табачного дыма.

В России и в других странах мира созданы специальные лаборатории и институты, проверяющие на мутагенность все новые синтезированные химические соединения.

К группе биологических мутагенов относят чужеродную ДНК и вирусы, которые, встраиваясь в ДНК хозяина, нарушают работу генов.

Вопросы для повторения и задания

1. Какие виды изменчивости вам известны?

2. Что такое норма реакции?

3. Объясните, почему фенотипическая изменчивость не передаётся по наследству.

4. Что такое мутации? Охарактеризуйте основные свойства мутаций.

5. Приведите классификацию мутаций по уровню изменений наследственного материала.

6. Назовите основные группы мутагенных факторов. Приведите примеры мутагенов, относящихся к каждой группе. Оцените, есть ли в окружающей вас среде мутагенные факторы. К какой группе мутагенов они относятся?

Подумайте! Выполните!

1. Как вы считаете, могут ли факторы внешней среды повлиять на развитие организма, несущего летальную мутацию?

2. Может ли комбинативная изменчивость проявиться в отсутствие полового процесса?

3. Обсудите в классе, какие существуют способы снижения действия мутагенных факторов на человека в современном мире.

4. Можете ли вы привести примеры модификаций, которые не имеют адаптивного характера?

5. Объясните человеку, незнакомому с биологией, чем мутации отличаются от модификаций.

6. Выполните исследование: «Изучение модификационной изменчивости у учащихся (на примере температуры тела и частоты пульса, периодически измеряемых на протяжении 3 суток)».

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

<<< Назад
Вперед >>>

Различия между видами и различия между особями внутри вида наблюдаются благодаря всеобщему свойству живого – изменчивости . Выделяют ненаследственную и наследственную изменчивость .

Наследственная (генотипическая) изменчивость связана с изменениями генетипа и передаче этих изменений из поколения в поколение. В зависимости от варьирования генетического материала различают две формы наследственной изменчивости: комбинативную и мутационную . Комбинативная изменчивость связана с образованием у потомков сочетаний генов без изменения их молекулярной структуры, формирующихся при перекомбинации генов и хромосом в процессе полового развития (кроссинговер, независимое расхождение хромосом, случайное сочетание гамет при оплодотворении). Мутационная изменчивость связана с приобретением новых признаков в результате мутаций. Мутации изменения наследственных свойств организма в результате перестроек и нарушений в генетическом материале организма (хромосомах и генах). Мутация – основа наследственной изменчивости в живой природе. Мутации индивидуальны, возникают внезапно, скачкообразно, ненаправленно, наследуются. По характеру изменения генотипа различают геномные (полиплоидия, анэуплоидия), хромосомные и генные мутации.

Причинами хромосомных мутаций могут являться: потеря хромосомой фрагмента после ее разрыва в двух местах; поворот участка на 180° после разрыва хромосомы (инверсия); обмен двух хромосом своими кусками (транслокация); удвоение участка в хромосоме (дупликация).

Причины генных мутаций: замена одного основания другим (например, А на Г); выпадение одного основания (делеция); включение одного дополнительного основания (дупликация); поворот ДНК на 180° (инверсия).

Следствием генетических и хромосомных мутаций являются, например, болезнь Дауна (трисомия по 21-й хромосоме), синдром Тернера (45 Х0), альбионизм, облысение и др.

Ненаследственная (фенотипическая, модификационная) изменчивость связана с изменениями фенотипа под влиянием внешней среды на экспрессию генов. Генотип остается неизменным. Границы изменчивости признака, возникающей под действием факторов среды, определяется ее нормой реакции . Главные особенности модификационных изменений: кратковременность (не передаются следующему поколению), групповой характер изменений, охватывающий большинство особей в популяции, имеют приспособительный характер.

Конец работы -

Эта тема принадлежит разделу:

Концепции современного естествознания

Государственное образовательное учреждение.. Высшего профессионального образования.. Тольяттинский государственный университет сервиса ТГУС..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Естественно-научная и гуманитарная культура. Научый метод
Под культурой в самом широком смысле принято понимать все то, что создано человечеством в ходе его исторического развития.Иначе говоря, культура – это совокупность созданных

Научный метод
Исследование феномена история науки непременно приводит к конкретным личностям – ученым, сделавшими открытия, изобретения, являющиеся «посредниками» в инновационной среде развития ц

Концепции строения материи и развития материального мира
Как известно, первый период становления естествознания относится к VII–IV вв. до н.э. и связан с греческой натурфилософией. В течение этого периода вырабатываются общие точки зрения

Корпускулярно-волновой дуализм
По-иному шла история развития представлений о природе света и оптических явлениях. Напомним, что Аристотель считал, что свет – это движение волн, распространяющихся в некоторой непр

Порядок и беспорядок в природе, детерминированный хаос
Обращая внимание на существующий порядок в природе, мы часто в качестве примера указываем на кристаллы, в кристаллической решетке которых строго чередуются ионы вещества (например,

Структурные уровни организации материи
В настоящее время принято единую Природу для удобства делить на три структурных уровня – микро-, макро- и мегамир. Естест­венными, хотя отчасти и субъективными, признаками деления я

Микромир
Атомная физика.Еще древние греки Левкипп и Демокрит выдвинули гениальную догадку, что вещество состоит из мельчайших частиц – атомов. Научные основы атомно-молекулярно

Макромир
От микромира к макромиру.Теория строения атома дала химии ключ к познанию сущности химических реакций и механизма образований химических соединений – более слож

Мегамир
Объектами мегамира являются тела космического масштаба – кометы, метеориты, астероиды (малые планеты), планеты, планетные пстемы, Солнечная система, звезды (нейтронные, белые и желт

Пространство и время
Пространство и время – категории, обозначающие основные фундаментальные формы существования материи. Пространство выражает порядок существования отдельных объектов, время – порядок см

Единство и многообразие свойств пространства и времени
Поскольку пространство и время неотделимы от материи, правильнее было бы говорить о пространственно-временных свойствах и отношениях материальных систем. Но при позна­нии пространства и времени уче

Принцип причинности
Классическая физика основывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причина, а ее состояние

Стрела времени
На существование парадокса времени было обращено внимание почти одновременно с естественнонаучной и философской точек зрения в конце XIX века. В работах философа Анри Бергсона вр

Пространство и время в греческой натурфилософии
Наиболее видные представители античного естествознания – Демокрит и Аристотель – высказали следующие суждения о пространстве и времени. Демокрит считал, что все природное многообразие сост

Пространство и время в специальной теории относительности (СТО)
В специальной теории относительности А. Эйнштейна выявилась взаимозависимость пространственных и временных характеристик объектов, а также их зависимость от скорости движения относительно определен

Пространство и время в общей теории относительности (ОТО)
Еще более сложную связь, по сравнению с СТО, между пространством и временем, с одной стороны, и движением и материей (массой вещества) – с другой, была установлена А. Эйнштейном в рамках созданной

Пространство и время в физике микромира
Еще более углубились представления о пространстве и времени в связи с изучением микромира квантовой механикой и квантовой теорией поля, выявившими тесную связь структуры пространства-времени с мате

Современные взгляды на пространство и время
Ранее мы выяснили, какие из свойств пространства и времени являются универсальными (всеобщими), а какие – специфическими (их всеобщность не доказана). Отнесение к специфическим хара

Специальная теория относительности
После создания электродинамики, доказавшей существование в природе еще одного вида материи – электромагнитного поля, которое математически описывается системой уравнений Максвелла,

Общая теория относительности
В СТО законы формулируются для инерциальных систем, движущихся с постоянной скоростью. В ОТО рассматриваются любые системы отсчета, в том числе и движущиеся с ускорением. Таким обра


2.6.1. Симметрия: понятие, формы и свойства Понятие симметрии. Как известно, в физике имеется целый ряд законов сохранения, например закон сохранения

Принципы симметрии и законы сохранения
Что такое симметрия? Слово это греческое и переводится как «соразмерность, пропорциональность, одинаковость в расположении частей». Часто проводятся параллели: симметрия и уравновеш

Диалектика симметрии и асимметрии
С давних времен симметрия форм, наблюдаемых в природе, производила на человека сильное впечатление. Он видел в симметрии порядок, гармонию, совершенство, вносимые всемогущим творцом

Концепции близкодействия и дальнодействия
Дальнодействие. После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие элек­трических заряженных тел, возник вопрос, почему

Фундаментальные типы взаимодействий
Согласно концепции близкодействия все взаимодействия между юлами (помимо прямого контакта между ними) осуществляются с помощью тех или иных полей (например, взаимодействие в теории

Дополнительности
Мы часто говорим о том или ином состоянии материи. Например, мы выделяем несколько агрегатных состояний вещества: твердое, жидкое, газообразное, плазма. Говорим о состояниях электромагнитного поля,

Принцип неопределенности
Используемые в квантовой механике волновые функции для описания микрочастиц дают возможность установить вероятность нахождения микрочастиц в том или ином месте пространства в соотве

Принцип дополнительности
Для описания микрообъектов Н. Бор сформулировал принципиальное положение квантовой механики – принцип дополнительности, который наиболее четко изложил в следующей форме:

Принцип суперпозиции
В физике при изучении линейных систем широко используется принцип суперпозиции. Принцип суперпозиции: общий результат воздействия на систему многих факторов равен сумме рез

Динамические и статистические закономерности в природе
Рассмотрим два типа физических явлений: механическое движе­ние тел и тепловые процессы. В первом случае движение тел подчиняется законам Ньютона, законам классической механики. Зако

Формы энергии
Энергия (от греч.– действие, деятельность) – общая ко­личественная мера движения и взаимодействия всех видов материи, Понятие «энергия» связывает воедино все явления природы.

Закон сохранения энергии для механических процессов
Одним из наиболее фундаментальных законов природы является закон сохранения энергии, согласно которому важнейшая физическая величина – энергия – сохраняется в изолированной системе.

Всеобщий закон сохранения и превращения энергии
Изучение процесса превращения теплоты в работу и обратно и установление механического эквивалента теплоты сыграло основную роль в открытии всеобщего закона сохранения и превращения

Закон сохранения энергии в термодинамике
Закон сохранения энергии сыграл решающую роль в создании новой научной теории – термодинамики. Опираясь на этот закон, был сделан ряд открытий в области электродинамики.

Понятие энтропии
Понятие энтропии исторически возникло при рассмотрении и изучении тепловых процессов и создании термодинамики. К мо­менту зарождения термодинамики в естествознании господствовала ме

Основные космологические теории эволюции Вселенной
Учение о мегамире как едином целом и всей охваченной астроно­мическими наблюдениями области Вселенной (Метагалактике) называется космологией. Вывод

Химические концепции описания природы
Химия – наука о веществах и процессах их превращения, сопровождающие изменением состава и структуры. Основанием химии выступает проблема получе

Развитие учения о составе вещества
Демокрит иЭпикурсчитали, что все тела состоят из атомов различной величины и формы, чем и объясняли различие тел. Аристотельи Эмпедоклвидимое разнообразие те

Развитие учения о структуре молекул
При взаимодействии атомов между ними может возникнуть химическая связь, приводящая к образованию многоатомной системы – молекулы, молекулярного иона или кристалла. Химическая связь

Энергетика химических процессов и систем
Химические реакции– взаимодействие между атомами и молекулами, приводящее к образованию новых веществ, отличных от исходных по химическому составу или строению. Химическ

Реакционная способность веществ
Химическая кинетика – раздел химии, изучающий закономерности протекания физико-химических процессов во времени и механизмы взаимодействия на атомно-молекуляр

Химическое равновесие. Принцип Ле Шателье
Многие химические реакции протекают таким образом, что исходные вещества целиком превращаются в продукты реакции или, как говорят, реакция идет до конца. Так, например, бертолетова соль при нагрева

Развитие представлений об эволюционной химии
Эволюционная химия рассматривает вопросы эволюционного развития и совершенствования химической формы материи, в том числе в процессах ее самоорганизации до перехода в биологическую

Внутреннее строение и история образования Земли
Земля, как и другие планеты, возникла из солнечного вещества. Документальными свидетелями допланетной стадии развития вещества и ранних этапов существования Земли служат соотношения

Внутреннее строение Земли
Главными методами изучения внутренних частей нашей планеты являются, в первую очередь, геофизические наблюдения за скоростью распространения сейсмических волн, образующихся при взрывах или землетря

История геологического строения Земли
Историю геологического строения Земли принято изображать в виде последовательно появляющихся друг за другом стадий или фаз. Отсчет геологического времени ведется от начала процесса

Современные концепции развития геосферных оболочек
4.2.1. Концепция глобальной геологической эволюции Земли Разработка концепции глобальной эволюции Земли позволила представить развитие геосферных об

История формирования геосферных оболочек
Рассмотрим в свете концепции глобальной эволюции Земли историю формирования основных геосферных оболочек. Этапы развития Земли с позиций концепции глобальной геоэво

Понятие литосферы
Литосфера – внешняя твердая оболочка Земли, которая включает всю земную кору и часть верхней мантии. Это особый слой толщиной порядка 100 км. Нижняя гр

Экологический функции литосферы
Обычно выделяют четыре экологические функции литосферы: ресурсную, геодинамическую, геофизическую и геохимическую. Ресурсная функция литосферы определя

Литосфера как абиотическая среда
В литосфере происходит множество процессов (сдвиги, сели, обвалы, эрозии и др.), имеющих целый ряд неблагоприятных экологических последствий в определенных регионах планеты, а иногд

Особенности биологического уровня организации материи
Биология (от греч. «биос» – жизнь, «логос» – учение) – наука о живой природе. Биология изучает живые организмы – вирусы, бактерии, грибы, животных и растения. В

Уровни организации живой материи
Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерар­хии живого. Выделяют следующие уровни органи

Свойства живых систем
М. В. Волькенштейном предложено следующее определение жизни: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, пос

Химический состав, строение и воспроизведение клеток
Из 112 химических элементов Периодической системы Д.И. Менделеева в состав организмов входит более половины. Химические элементы входят в состав клеток в виде ионов или компонентов молекул неоргани

Биосфера и ее структура
Термин «биосфера» использовал в 1875 г. австрийский геолог Э. Зюсс для обозначения оболочки Земли, населяемой живыми организмами. В 20-х гг. прошлого века в трудах В.И. Вер

Функции живого вещества биосферы
Живое вещество обеспечивает биогеохимический круговорот веществ и превращение энергии в биосфере. Выделяют сле­дующие основные геохимические функции живого вещества: 1.Энергетич

Круговорот веществ в биосфере
Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения

Основные эволюционные учения
На протяжении многих веков господствовали представления о Божественном происхождении природы, о том, что виды организмов были созданы в их нынешних формах, после чего они же не изме

Микро- и макроэволюция. Факторы эволюции
Эволюционный процесс разделяют на два этапа: - микроэволюцию – возникновение новых видов; - макроэволюцию – эволюци

Направления эволюционного процесса
С момента возникновения жизни развитие живой природы шло от простого к сложному, от низкоорганизованных форм к более высоко организованным и имело прогрессивный характер. А.

Основные правила эволюции
Правило необратимости эволюции (правило Л. Долло): эволюционный процесс необратим, возврат к прежнему эволюционному состоянии, ранее осуществленному в ряду поколений предков, н

Происхождение жизни на Земле
Существует несколько гипотез о происхождении жизни на Земле. Креационизм – земная жизнь была создана Творцом. Представления о Божественном сотворении мира приде

Механизм возникновения жизни
Возраст Земли со­ставляет около 4,6–4,7 млрд. лет. Жизнь имеет свою историю, начавшуюся, по палеонтологическим данным, 3–3,5 млрд. лет назад. В 1924 г. русский академик А.И. Опарин

Начальные этапы развития жизни на Земле
Как полагают, первые примитивные клетки появились в водной среде Земли 3,8 млрд. лет назад – анаэробные, гетеротрофные прокариоты, они питались синтезированными абиогенно ор

Основные этапы развития биосферы
Эон Эра Период Возраст (начало), млн. лет Органический мир

Система органического мира Земли
Современное биологическое разнообразие: на Земле от 5 до 30 млн. видов. Биологическое разнообразие – как результат взаимодействия двух процессов – видообразования и вымира­ния. Биологическое

Надцарство Эукариоты
Эукариоты– од­ноклеточные или многоклеточные организмы, имеющие оформленное ядро и различные органоиды. ЦАРСТВО ГРИБЫ – подцарство Слизевики

Структура и функционирование экологических систем
Экологические факторы – это отдельные элементы среды обитания, которые воздействуют на организмы. Каждая из сред обитания отличается особенностями воздей

Концепции устойчивого развития
Появление на Земле около 40 тыс. лет назад человека разумного Вернадский рассматривал как естественную часть биосферы, а деятельность его – как важнейший геологический фактор. С поя

Наследственной информации
Генетика – наука, изучающая наследственность и изменчивость живых организмов. Наследственность заключается в способности организмов передавать осо

Основные генетические процессы. Биосинтез белка
Функциональные возможности генетического материала (способность сохраняться и воспроизводиться при смене клеточных поколений, реализовываться в онтогенезе и в ряде случаев изменятьс

Основные законы генетики
Первый закон Менделя (закон единообразия): при скрещивании гомозиготных особей, все гибриды первого поколения едино­образны. Например, при скрещивании ра

Как факторы дальнейшей эволюции
Генетическая (генная)инженерия – совокупность методов конструирования лабораторным путем (in vitro) генетических структур и насле

Антропогенез
Человек – это целостное единство биологического (организменого), психического и социального уровней, которые формируются из природного и социального, наследственного и прижизненно п

Физиологические особенности человека
Физиология изучает функции живого организма, отдельных органов, систем органов, а также механизм регуляции этих функций. Человек представляет собой сложную саморегулирующую

Основные закономерности роста человека
Кривая роста человека, рост в пренатальном и постнатальном периодах, абсолютный рост, скорость роста. Пренатальный рост, общая характеристика пренатального роста, из­менение скорости роста от оплод

Здоровье человека
По определению Всемирной организации здравоохранения (ВОЗ), здоровье человека –это состояние полного физического, душевного и социального благополучия. Здоро

Группировка факторов риска и их значение для здоровья
Группы факторов риска Факторы риска Значение для здоровья, % (для России) Биологические факторы

Эмоции. Творчество
Эмоции представляют собой реакции животных и человека на воздействие внешних и внутренних раздражителей, имеющие ярко выраженную субъективную окраску и охватывающие все виды чу

Работоспособность
Работоспособность – это способность к выполнению работы. С физиологической точки зрения работоспособность определяет возможности организма при выполнении работы, к поддержанию структуры и энергозап

Принципы мудрого отношения к жизни
Физические нагрузки успокаивают и помогают переносить душевные травмы. Умственное перенапряжение, неудачи, неуверенности, бесцельное существование – самые вредоносные стрессоры. Среди всех работ, с

Противоречия современной цивилизации
Сто пятьдесят лет тому назад в биосфере сложилось определенное равновесие. Человек использовал относительно небольшую часть ресурсов природы, перерабатывал ее для обеспечения своих

Понятие биоэтики и ее принципы
Для того чтобы предупредить развитие такого пессимистического сценария эволюции биосферы, в последние годы набирает силу новая наука –биоэтика, находящаяся на стыке биологии

Медицинская биоэтика
Одной из очень важных проблем биоэтики является также проблема «человек–медицина». Она включает, например, такие вопросы, как целесообразность поддержания жизни смертельно больного

Принципы поведения животных
Биоэтику следует рассматривать как естественное обоснование человеческой морали. Когда мы, люди, говорим «мы все люди и ничего человеческое нам не чуждо» на самом деле наше поведение похоже

Биосфера и космические циклы
Биосфера – живая открытая система. Она обменивается энергией и веществом с внешним миром. В данном случае внешний мир – это безбрежное космическое пространство. Извне на Зе

Биосфера и ноосфера
Факторы эволюции и этапы развития биосферы.Эволюция биосферы на протяжении большей части ее истории осуществлялась под влиянием двух главных факторов: 1) естественных

Современное естествознание и экология
Экология вызывает в настоящее время особый интерес как в различных естественно-научных дисциплинах, так и в гуманитарном знании. Интегрирующее направление в этой науке связано с исс

Экологическая философия
Задача современной экологической науки – искать такие способы воздействия на окружающую среду, которые помогли бы предотвратить катастрофические последствия и практическое использов

Планетарное мышление
Когда наступает время для определенной идеи, системы взглядов, то они начинают проявляться самыми различными способами, в широком многообразии форм и видов. Об этом явлении часто го

Ноосфера
Под ноосферой понимается сфера разума, но разработано это понятие еще совершенно недостаточно. Однако точка зрения, согласно которой ноосфера представляет собой одно из природных ра


В последние годы работами ряда авторов, и, прежде всего, И. Пригожина и П. Гленсдорфа, была развита термодинамика сильно неравновесных систем, в которых связь между термодинамически

Пространственные диссипативные структуры
Простейшим примером пространственныx структур являются ячейки Бенара, обнаруженные им в 1900 г. Если горизонтальный слой жидкости сильно подогреть снизу, то между нижней и верхней п

Временные диссипативные структуры
Примером временной диссипативной структуры является химическая система, в которой протекает так называемая реакция Белоусова–Жаботинского. Если система отклонилась от

Химическая основа морфогенеза
В 1952 г. вышла работа А. Тьюринга «О химической основе морфогенеза». Морфогенезом называется возникновение и развитие сложной структуры живого

Самоорганизация в живой природе
Рассмотрим процесс саморегуляции в живых сообществах на достаточно простом примере. Предположим, что в некой экологической нише совместно обитают кролики и лисы. Если в нек

Самоорганизация в неравновесных системах
Рассмотрим простую симметричную бифуркацию, приведенную на рис. 5. Выясним, как возникает самоорганизация и какие процессы происходят, когда ее порог оказывается превзойденным.

Типы процессов самоорганизации
Различают три типа процессов самоорганизации: 1)процессы самозарождения организации, т.е. возникновение из некоторой совокупности целостных объектов определенного уровня но

Принципы универсального эволюционизма
Принцип универсального эволюционизма одна из доминирующих современных концепций в науке. Сформировавшийся вначале как результат обобщения естественно-научных знаний, он стал постепе

Самоорганизация в микромире. Формирование элементного состава вещества материи
На основе достижений ядерной физики в первой половине прошлого века удалось понять механизм образования химических элементов в природе. В 1946–1948 гг. американский физик Д. Гамов р

Химическая эволюция на молекулярном уровне
До возникновения жизни на Земле в течение длительного времени, продолжавшегося около двух миллиардов лет, происходил химическая эволюция неживой (косной материи). В связи с существованием

Самоорганизация в живой и неживой природе
На основе данных археологии, палеонтологии и антропологии Ч. Дарвин, как известно, доказал, что все многообразие живых организмов сформировалось в процессе длительной эволюции из бо

Самоорганизация Вселенной
Еще менее ста лет назад в науке господствовала точка зрения об однородной, стационарной, бесконечной во времени и в пространстве Вселенной. Однако после создания А. Эйнштейном общей теории относите

Концепции эволюционного естествознания
Краткий анализ процессов, протекающих в микро-, макро- и мегамире, позволяет говорить о том, что на всех уровнях организации материи доминирующими являются эволюционные процессы. Эт

Структурность и целостность в природе. Фундаментальность понятия целостности
Важнейшим атрибутами природы является структурность и целостность. Они выражают упорядоченность ее существования и те конкретные формы, в которых она проявляется. Структура п

Принципы целостности современного естествознания
Следует отметить, что в настоящее время бурно развивается философия науки, которая существенно отличается от естествознания и по своим целям, и по методам исследования. Философия на

Самоорганизация в природе в терминах параметров порядка
Система может быть определена как комплекс взаимодействующих элементов (определение Берталанфи). Систему можно определить как любую совокупность переменных, которую

Методология постижения открытого нелинейного мира
XXIвек характеризуется бурным экспоненциальным ростом научных знаний. Человечество знает и умеет значительно больше, чем может осмысленно использовать. Это породило серьезную про­бл

Основные черты современного естествознания
Выделим несколько характерных черт современного естествознания. 1. Развитие естествознания в XVII-XVIII вв. и вплоть до конца XIX в. происходило под подавляющим превосходст

И синергетическая среда в постижении природы
Синергетический подход к познанию, точнее к постижению Природы, расставляет точки над и в том смысле, что становится более понятным, что знания не приобретают как вещь, ими овладева

Принципы нелинейного образа мира
Первая научная картина мира была построена И. Ньютоном, несмотря на внутреннюю парадоксальность, она оказа­лась удивительно плодотворной, на долгие годы, предопределив самодвижение

От автоколебаний к самоорганизации
Для пояснения поведения открытых систем и их постижения удобным является использование аппарата нелинейных колебательных систем, разработанного в радиоэлектронике и связи, на фазовы

Формирование инновационной культуры
Инновационная культура – это знания, умения и опыт целенаправленной подготовки, комплексного внедрения и всестороннего освоения новшеств в различных областях человеческой жиз

Глоссарий
Абиогенный – абиогенная эволюция, абиогенное вещество – неживого, небиологического происхождения. Абиогенез – самопроизвольное зарождение жизни, в

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ПАТОЛОГИЧЕСКОЙ ФИЗИОЛОГИИ

С. А. Жадан, Т. Н. Афанасьева, Ф. И. Висмонт

РОЛЬ НАСЛЕДСТВЕННОСТИ В ПАТОЛОГИИ

Учебно-методическое пособие

Минск БГМУ 2012

ОБЩАЯ ХАРАКТЕРИСТИКА НАСЛЕДСТВЕННОЙ ПАТОЛОГИИ

Медицинская генетика и ее задачи

Наследственность - это свойство живых существ и клеток организма передавать свои признаки (анатомо-физиологические особенности) потомкам. Она обеспечивает относительную стабильность вида. Материальными носителями наследственной информации являются гены - участки молекулы ДНК.

Изменчивость - свойство организма и его клеток, проявляющееся в возникновении новых признаков.

В настоящее время известно около 2000 видов наследственной патологии

и генетически детерминированных синдромов. Число их постоянно растет, ежегодно описываются десятки новых форм наследственных болезней . Основными причинами, способствующими увеличению роста наследственной патологии, являются:

– значительные успехи медицины в лечении и предупреждении многих инфекционных болезней;

– возрастающее загрязнение окружающей среды мутагенными агентами;

– увеличение средней продолжительности жизни человека.

Наряду с этим совершенствование методов диагностики и успехи молекулярной биологии позволяют выявлять генетическую природу ряда серьезных заболеваний, ранее не связываемых с аномалиями генома (например, хромосомные болезни).

Генетика - это наука о наследственности и изменчивости организма. Раздел генетики, который занимается изучением наследственности и изменчивости человека с точки зрения патологии, называется медицинской генетикой .

Основными задачами медицинской генетики являются:

1. Изучение наследственных форм патологии, их этиологии, патогенеза, совершенствование диагностики, разработка методов профилактики и лечения.

2. Изучение причин и механизмов наследственно детерминированной предрасположенности и резистентности к различным (в том числе и инфекционной природы) заболеваниям.

3. Изучение роли и значения генетического аппарата в развитии реакций адаптации, компенсации и явлениях декомпенсации.

4. Подробное всестороннее изучение процессов мутагенеза и антимутагенеза, их роли в развитии болезней.

5. Изучение ряда общебиологических проблем: молекулярногенетических механизмов канцерогенеза, роли генетического аппарата в явлениях тканевой несовместимости, аутоиммунных реакциях организма и др.

Понятие о наследственной и врожденной патологии. Фенокопии

Понятия «наследственные болезни» и «врожденные заболевания» далеко не однозначны.

Врожденными называют любые заболевания, проявляющиеся сразу после рождения ребенка. Они могут быть наследственными и ненаследственными.

К числу наследственных болезней относятся лишь те, в основе которых лежат структурные изменения в генетическом материале. Одни из них клинически проявляются уже в первые дни после рождения, другие -в юношеском, зрелом, а иногда и в пожилом возрасте.

Ненаследственные болезни обусловлены действием неблагоприятных факторов среды на развивающийся плод в период беременности и не затрагивают его генетический аппарат.

Фенокопии, причины их развития

В медицинской генетике выделяют еще одно понятие - фенокопии. Фенокопия представляет собой клинический синдром, возникающий под влиянием факторов внешней среды в период эмбрионального развития, сходный по своим проявлениям с наследственным заболеванием, но имеющий негенетическую природу возникновения. Например, такие аномалии, как «волчья пасть », «заячья губа », могут быть и наследственно обусловленными (синдром Патау), и ненаследственными, возникающими в результате нарушения эмбрионального развития. Гипотиреоз наследуется как аутосомно-рецессивный признак, но может встречаться и как фенокопия у людей, проживающих в районах, где питьевая вода бедна йодом. Ранняя глухота может наследоваться как рецессивный или доминантный признак, а может встречаться как фенокопия у детей, рожденных женщинами, переболевшими во время беременности краснухой.

Таким образом, фенокопии представляют собой заболевания, внешне похожие на наследственные болезни, но не связанные с изменением генотипа.

Причинами фенокопии могут быть:

кислородное голодание плода (внутриутробная гипоксия), вызывающее развитие серьезных дефектов структуры мозга и черепа, микроцефалию;

эндокринные нарушения в организме беременной женщины (вероятность рождения больного ребенка у такой женщины примерно в 2,5 раза выше);

инфекционные заболевания беременной женщины (токсоплазмоз, краснуха, сифилис и др.), особенно в ранний период беременности, вызывающие в значительном проценте случаев (до 60–70 %) тяжелые уродства (микроцефалию, глухонемоту, расщелину мягкого неба и др.);

тяжелая психическая травма и длительные эмоциональные перенапряжения женщины в период беременности;

лекарственные препараты, обладающие цитотоксическим или антиметаболическим действием;

хронический алкоголизм родителей (пороки развития у детей непьющих родителей составляют около 2 %, у умеренно пьющих - до 9 %, у сильно пьющих - 74 %) и др.

Классификация болезней с учетом взаимоотношения наследственных и средовых факторов в их развитии. Понятие

о пенетрантности и экспрессивности

В развитии болезни, как и в жизнедеятельности здорового организма, принимают участие два основных фактора: воздействия внешней среды

(внешний фактор) и наследственность (внутренний фактор).

С учетом удельного веса внутреннего и внешнего факторов в развитии болезни выделяют следующие группы заболеваний (Н. П. Бочков, 2002):

1. Собственно наследственные болезни. Причиной этих заболеваний являются аномалии в генетическом аппарате клетки, т. е. мутации (генные, хромосомные и геномные). Среда определяет лишь пенетрантность (частоту проявления аномального гена в популяции особей, обладающих данным геном)

и экспрессивность (степень выраженности действия гена у конкретной особи). К этой группе относятся такие моногенно обусловленные заболевания, как алкаптонурия, фенилкетонурия, гепатоцеребральная дистрофия, гемофилия и др., а также все хромосомные болезни.

2. Экогенетические заболевания . Эта группа наследственных болезней обусловлена мутацией, действие которой проявляется только при воздействии на организм определенного, специфического для данного мутантного гена фактора внешней среды. Для этих болезней и генетическая, и средовая

составляющая представлены однофакторно: индивидуальный ген - специфический к данному гену средовой фактор. К таким заболеваниям относится, например, серповидноклеточная анемия (полудоминантно наследуемая гемоглобинопатия). У гетерозиготных носителей HbS гемолитические кризы, ведущие к анемии, возникают лишь в условиях гипоксии или ацидоза. При наследственной ферментопатии, связанной с дефицитом глюкозо-6-фосфатдегидрогеназы, аналогичную роль может играть применение лекарств-окислителей, употребление конских бобов, иногда вирусная инфекция.

3. Болезни с наследственной предрасположенностью. Являются результатом взаимодействия генетических и средовых факторов, причем и те, и другие многочисленны. Иногда эти болезни называют многофакторными, или мультифакториальными. К ним относится подавляющее число болезней зрелого и пожилого возраста: гипертоническая болезнь, атеросклероз, ишемическая болезнь сердца, язвенная болезнь желудка и 12-перстной кишки, злокачественные новообразования и др.

Между второй и третьей группой болезней нет четкой разницы. Их часто объединяют в одну группу болезней с наследственной предрасположенностью, различая моногенно и полигенно детерминированную предрасположенность.

4. Болезни, обусловленные факторами среды, от действия которых организм не имеет средств защиты (экстремальные). Это различные травмы

(механическая, электрическая), болезни, возникающие под действием ионизирующей радиации, ожоги, отморожения, особо опасные инфекции и др. Генетический фактор в этих случаях определяет лишь тяжесть болезни, ее исход, в ряде случаев - вероятность возникновения.

Классификация наследственных форм патологии

В связи со сложной природой наследственной патологии существует два основных принципа ее классификации: клинический и генетический.

Клинический принцип классификации подразумевает деление наследственных форм патологии в зависимости от органа или системы, наиболее вовлеченных в патологический процесс. В соответствии с этим критерием выделяют наследственно обусловленные заболевания нервной системы, болезни опорно-двигательного аппарата, кожи, крови и др.

В основу генетической классификации наследственных болезней положен этиологический принцип, а именно тип мутаций и характер их взаимодействия со средой. В соответствии с этим критерием всю наследственную патологию можно разделить на группы:

1) генные болезни, вызываемые генными мутациями;

2) хромосомные болезни, возникающие в результате хромосомных или геномных мутаций;

3) болезни с наследственной предрасположенностью (многофакторные )

- развиваются у лиц с соответствующим сочетанием «предрасполагающих» наследственных и «проявляющих» внешних факторов;

4) генетические болезни соматических клеток ;

5) болезни генетической несовместимости матери и плода .

Каждая из этих групп, в свою очередь, подразделяется в соответствии с более детальной генетической характеристикой и типом наследования.

Этиология наследственных форм патологии. Мутации, их виды. Понятие о мутагенах

Отдельные гены, хромосомы и геном в целом постоянно претерпевают разнообразные изменения. Несмотря на то, что существуют механизмы репарации (восстановления) ДНК, часть повреждений и ошибок сохраняется. Изменения в последовательности и числе нуклеотидов в ДНК называют мутациями.

Мутации - стойкое скачкообразное изменение в наследственном аппарате клетки, не связанное с обычной рекомбинацией генетического материала.

Все мутации классифицируют в соответствии с несколькими критериями. 1. По причине возникновения различают спонтанные и индуцированные

Спонтанные мутации - это мутации, возникшие самопроизвольно под влиянием естественных мутагенов экзоили эндогенного происхождения. Причиной таких мутаций может быть космическое излучение, радиоактивные изотопы, эндогенные химические мутагены (перекиси и свободные радикалы - аутомутагены), образующиеся в организме в процессе обмена веществ. Значительную роль в возникновении спонтанных мутаций играет возраст. У мужчин с возрастом в половых клетках накапливаются генные мутации. У женщин зависимость генных мутаций от возраста не отмечена, но выявлена четкая связь возраста матери с частотой хромосомных заболеваний у потомства.

Индуцированные мутации - это мутации, вызванные направленным воздействием на организм факторов различного происхождения - физических, химических или биологических мутагенов. Распространенность некоторых мутагенов в среде обитания человека представлена в прил. 1.

К физическим мутагенам относятся ионизирующие излучения (α-, β- и γ- лучи, рентгеновское излучение, нейтроны) и УФ-излучение. Особенность ионизирующего излучения состоит в том, что оно может индуцировать мутации

в низких дозах, не вызывающих лучевого поражения.

К химическим мутагенам относят спирты, кислоты, тяжелые металлы, соли и другие соединения. Химические мутагены содержатся в воздухе (мышьяк, фтор, сероводород, свинец и др.), почве (пестициды и другие

химикаты), пищевых продуктах, воде. Установлено, что многие лекарственные препараты обладают выраженной мутагенной активностью (прил. 2). Очень сильным мутагеном является конденсат сигаретного дыма, который содержит бензпирен. Конденсат дыма и поверхностная корочка, образующиеся при обжаривании рыбы и говядины, содержат пиролизаты триптофана, которые являются химическими мутагенами. Особенность химических мутагенов состоит в том, что их действие зависит от дозы и стадии клеточного цикла. Чем выше доза мутагена, тем сильнее мутагенный эффект.

К биологическим мутагенам относятся бактериальные токсины, вирусы кори, краснухи, гриппа, герпеса, антигены некоторых микроорганизмов.

Основные медицинские последствия мутагенеза в различных типах клеток представлены на рис. 1.

2. По виду клеток , в которых произошла мутация, выделяют гаметические, соматические и мозаичные мутации.

Гаметические мутации возникают в половых клетках. Они наследуются потомками и, как правило, обнаруживаются во всех клетках организма. Их последствия сказываются на судьбе потомства и служат причиной наследственных заболеваний.

Рис. 1 . Медицинские последствия мутагенеза в различных типах клеток

Соматические мутации возникают в соматических клетках, носят случайный характер, могут возникать на любой стадии развития, начиная с зиготы. По наследству не передаются.

Мозаичные мутации - это мутации, которые возникают в клетках эмбриона или плода. В результате возникают клеточные линии с различными генотипами. Одни клетки организма имеют нормальный кариотип, а другие - аномальный. Чем раньше в онтогенезе происходит соматическая мутация, тем больше клеток содержит данную мутацию и тем более выражены ее проявления.

3. По значению различают патогенные, нейтральные и благоприятные мутации.

Патогенные мутации приводят к гибели эмбриона (или плода) или к развитию наследственных и врожденных заболеваний. Они делятся на летальные, полулетальные, нелетальные. Летальность может проявляться на уровне гамет, зигот, эмбрионов, плодов, а также после рождения.

Нейтральные мутации обычно не влияют на жизнедеятельность организма (например, мутации, вызывающие появление веснушек на коже, изменение цвета волос, радужной оболочки глаза).

Благоприятные мутации повышают жизнеспособность организма или вида (например, темная окраска кожных покровов у жителей африканского континента).

4 . В зависимости от объема поврежденного материала мутации делятся на генные (изменения в отдельных генах), хромосомные (структурные хромосомные аберрации), геномные (численные хромосомные аберрации).

Антимутагенез. Механизмы действия антимутагенов

Антимутагенез - это процесс подавления спонтанных и индуцированных мутаций. Вещества, обладающие такими свойствами, называются антимутагенами. Некоторые из них приведены в прил. 3.

Существуют различные принципы классификации антимутагенов:

1) по происхождению: экзогенные и эндогенные, внутриклеточные и внеклеточные;

2) механизму действия;

3) химическому строению и антиканцерогенным свойствам.

К экзогенным относят антимутагены:

незаменимые аминокислоты (метионин, гистидин, аргинин, глютаминовая кислота и др.);

витамины и провитамины (преимущественно А, Е, С, К);

полиненасыщенные жирные кислоты;

микроэлементы (Se), хлорид кобальта;

пищевые волокна;

2) проникающие в организм респираторным путем (фитонциды);

3) поступающие в организм человека перорально в процессе фармакотерапии либо профилактического применения:

лекарства (стрептомицин, левомицетин и др., применяемые в малых

специально синтезированные лекарства (бемитил);

биологически активные добавки (индол-3-карбинол и др.);

синтетические антимутагены (ионол, дибунол и др.).

К эндогенным антимутагенам относятся:

1) система репарации поврежденной ДНК;

2) антиоксидантная система;

3) ферментные системы;

4) клеточные метаболиты;

5) гормоны щитовидной железы, мелатонин;

6) эмбриональные вещества (Со);

7) S-содержащие соединения (глутатион).

Механизмы действия антимутагенов

К основным механизмам действия антимутагенов относятся:

1. Инактивация мутагенов внешнего происхождения и предохранение ДНК от их повреждающего действия (дисмутагены). В большинстве случаев дисмутагены устойчиво связываются с мутагеном и выводят его из организма (экстракты петрушки, свеклы, редиса, сельдерея, сливы, черники, яблок).

2. Подавление процесса образования истинных мутагенов из предшествующих немутагенных веществ (витамины С, Е, дубильные вещества,

некоторые фенолы).

3. Подавление активности свободных радикалов, которые могут повреждать ДНК (антиоксиданты: супероксиддисмутаза, глютатионпероксидаза, каталаза, витамин С, А, α-токоферол, β-каротин, Е, мелатонин и др.).

4. Повышение активности ферментных систем, обезвреживающих мутагены, канцерогены и другие генотоксические соединения . Универсальный механизм инактивации ксенобиотиков обеспечивают микросомальные ферменты печени, которые метаболизируют до 75 % всех лекарств.

5. Антимутагены, уменьшающие ошибки репарации и репликации ДНК,

активация и коррекция репарации (репарагены). К репарационным

антимутагенам, которые содержатся в некоторых пищевых продуктах (например, в кукурузном, хлопковом, подсолнечном, соевом и других растительных маслах), относятся:

ванилин, цианамальдегид и другие альдегиды, образующиеся при окислении насыщенных жирных кислот. Эти вещества стимулируют генетическую рекомбинацию, временно угнетают деление клеток, увеличивая время репарации ДНК;

соли кобальта, повышающие эффективность безошибочной репарации ДНК (содержатся в достаточном количестве в луке, капусте, томатах, салате, картофеле, черной смородине и грушах).

6. Антимутагены с неизвестным механизмом действия. В последние годы установлена полифункциональность у некоторых антимутагенов (фенольный компонент зеленого чая - эпигаллокатехингалат, изоцианаты из крестоцветных овощей - сульфоран и фенолизоционат и др.). Антимутагены выступают в роли перехватчиков свободных радикалов, подавляют синтез метаболической активации ксенобиотиков и стимулируют их детоксикацию, модулируют репарацию ДНК, влияют на транскрипционные факторы и сигнальные пути, вовлеченные в апоптоз и регуляцию клеточного цикла, подавляют воспаление и ангиогенез.

Таким образом, к основным антимутагенам относятся:

1) соединения, нейтрализующие мутаген до его реакции с молекулой

2) вещества, снимающие повреждение молекулы ДНК, вызванное мутагеном, или повышающие ее устойчивость к мутагену;

3) соединения, препятствующие превращению в организме косвенных мутагенов в истинные.

ГЕННЫЕ БОЛЕЗНИ

Генные болезни - разнородная по клиническим проявлениям группа заболеваний, обусловленных мутациями на генном уровне. Основой для объединения их в одну группу являются этиологическая генетическая характеристика и, соответственно, закономерности наследования в семьях и популяциях.

Этиология генных болезней

Причинами генных болезней являются генные мутации , которые могут затрагивать структурные, транспортные и эмбриональные белки, а также ферменты.

Генные мутации - это молекулярные изменения структуры ДНК. Они обусловлены изменением химического строения гена, а именно специфической